

Language in children with early brain injuries: behavioral and imaging evidence of plasticity

> Brian MacWhinney, CMU Heidi Feldman, Pitt Kelley Sacco, CMU

Outline

- Preformation/Emergentism -- Seven theories
- Development of language in preschool children with early unilateral brain injuries
- Performance at school age
 - Formal measures
 - Sentence comprehension strategies
 - Information processing tasks
- fMRI to uncover patterns of reorganization of language

Classic theory: Language modules in adult brain

Modules from birth?

A toolkit

A Gene for the Past Tense?

Achilles' Heel of Modularity: a child with marked hydrocephalus and normal language

Alternative theory: Emergentism

- Language areas not highly circumscribed nor highly specialized, though LH dominant
 - RH becomes activated for various components or levels of difficulty
 - After injury, recovery may be possible with training

Structure in Honeycombs

What happens if early damage?

Children with early brain injury

L

Back

MRI scans of PVH

Child with early brain injury

Rachel 4 years old

Seven observed patterns

1. Preferential language sparing

2. Cognitive crowding

3. Hemispheric equipotentiality

4. Contralateral recruitment

5. Local recruitment

6. White matter commitment

7. Late rigidity

Lack of direct evidence

- No direct evidence of crowding
- No direct evidence of use of contralateral homologs
- Unclear evidence on equipotentiality
- No direct evidence of local recruitment
- No direct evidence on actual organization

Open Developmental Questions

- Initial delay -> catchup -> final parity?
 OR
- Sparing -> cognitive crowding -> decline in late acquisitions (math, reading)
- Exactly how does brain reorganize?

Language development in children with early brain injuries (Feldman, Holland, Kemp, Janosky, 1992)

- To describe the changes over time in language skills of young children learning language
- Multiple observations of parent-child communication
 - Lexicon—Number of words
 - Syntax—MLU and IPSYN
- Compare children with unilateral LH and RH damage to children developing typically

Vocabulary growth

LH injury

RH injury

Average sentence length

LH injury

RH injury

Grammatical complexity

LH injury

RH injury

Summary and Questions

- Children with early brain injuries may show initial delays and then near normal rates of development
- Suggests takes longer to organize the damaged system
- Issues
 - What are the best measures to assess early language in these children? Types versus tokens, competence versus performance
 - Would larger sample reveal greater difference?
 - What happens as the children reach school age?

Formal testing at school age

(MacWhinney, Feldman, Sacco, Valdez-Perez, 2000)

- Goal: to determine how children with early brain injuries perform on formal measures at ages 6 to 10 years
- Measures
 - Non-verbal intelligence test (Leiter International Performance Scales)
 - Receptive vocabulary (PPVT-R)
 - Language Functions (CELF-R)

Formal Testing Results

Non-verbal intelligence and Receptive language

Formal Language Measures

Language Measures

Sentence comprehension study

(Feldman, MacWhinney, Sacco, in press)

- Goal: to determine the cues children use to determine the agent of the action in sentence-comprehension
 - Syntax is area of alleged weakness in many studies of children with acquired injuries
 - Functional tasks better than judgments
 - To isolate sentence comprehension strategies, need task with minimal other processing demands: simple input, no memory load, and non-verbal (pointing response)

Task

- On-line "who done it?" task
 - Sentences were simple
 - Varied by word order: NVN, VNN, and NNV
 - Nouns were animate or inanimate
 - No intonation cues
 - Words and picture stimuli presented simultaneously on computer screen
 - Child indicates the agent by pointing to the appropriate picture
 - Yields accuracy and reaction time

Stimuli

- NVN-AA
- NNV-AI
- VNN-IA

The cat kissed the bear. The lion the pencil watched. Hugged the block the camel.

Typical development results

- 3-4 year olds decide on the basis of animacy
- 5-6 year olds choose first noun in NVN
- 7-8 year olds choose first noun in NVN and second noun in VNN
- 9-10 year olds choose second noun in NNV, adult pattern

(Von Bergen et al, 1996)

First noun choice

Main effect of word order p<.001 Main effect of group p=.058 Interaction of word order X group p = .027

Reaction Time

Main effect of word order p < .001 Main effect of age p=.037

Parameter estimates

	Controls	Subjects		
	Younger	Older	Younger	Older
	(n=82)	(n=59)	(n=7)	(n=5)
Animacy	.5891	.5782	.5598	.5374
NVN	.9242	.9720	.8131	1.000
VNN	.1955	.0967	.2460	.1891
NNV	.4746	.4428	.6428	.6684

Children with RH damage

- N = 3
- 2 children were delayed
- The only child of the 15 subjects to show mature strategy on the NNV was one with RH PVH

Summary

- Unexpected developmental delays in children with LH and RH brain injuries in sentence comprehension strategies
- Variability in performance across the group
- Would be useful to assess children > age 12 years

Developmental course after early brain injury

Hypothetical Results

Information processing tasks

(Feldman, MacWhinney, Sacco, Valdez-Perez, 2000)

- Goal: to identify specific patterns of impairment as a function of lesion location as source of language and sentence comprehension profiles
- Tasks—computerized tasks
 - Picture naming, number naming, word repetition
 - Also, digit span task
- Measures—accuracy and reaction time
- Data analysis—profiled subjects' scores in comparison to scores to 150 children at appropriate grade for age

Out of range: Ss 10/20 Cs 12/150

Out of range Ss 7/20 Cs 10/150

Out of range: Ss 5/20 Cs 7/150

Out of range Ss 5/20 Cs 7/150

Children's net outlier scores

Language Sparing

- Focal lesions kids didn't do poorly overall
- All scored within 95% confidence interval from the normal mean on at least half of the tests

Language Deficit

- Children with the lowest scores were usually the focal lesion kids
- Each focal lesion child had at least one test for which they scored significantly below normal

Summary

- No highly specific pattern associated with lesion location
- In general, children with brain injury perform simple information processing tasks more slowly than peers
- Suggestion that children with LHD have selective difficulty in naming
- Need for larger sample and more language-related tasks

How is the brain organized to

fMRI: assesses function through hemodynamic consequences

Inactive state

Uses of fMRI

- Basic question: Where is a specific operation performed in the brain?
- Measures
 - Identity of brain regions involved: Region of interest
 - Magnitude of activity in those regions
 - Spatial extent of activation
 - Correlations among activity in brain regions

Brain activation during sentence comprehension

- Goals:
 - Describe developmental differences in brain activation during sentence comprehension
 - Describe functional organization of sentence processing in children with early brain injury
- Hypotheses:
 - LH activation in adults and children
 - RH activation in children with LHD

Methods

- Subjects
 - A: 20-28 year old right handed (n=5)
 - C-NN: 9-12 year old right-handed (n=7)
 - C-BI: 9-12 year old (n=6)
 - 3 LH stroke
 - 2 LH periventricular hemorrhage
 - 1 RH stroke

Sentence comprehension task

- Auditory presentation of 3 sentence types
 - CVP: The cat chased the rabbit and enjoyed the hunt.
 - SR: The principal that tripped the janitor used the phone to call home.
 - OR: The pig that the dog followed ate the trash in the street.
- Comprehension test after each presentation

 T/F: The principal used the phone to call home. (T)
 T/F: The dog ate the trash in the street. (F)

Analysis: 17 ROI

Results: Percent errors

	Sentence Types		
Participants	CVP	SR	OR
Adults	11%	7%	18%
Children	36%	32%	36%
Children with brain injury	42%	51%	42%

Results sentence processing

Right

Left

Results by ROI

Network for sentence comprehension

Summary

- Activation patterns for sentence comprehension show developmental change

 Greater levels of activation in adults
 Bilateral activation in adults
- Children with brain injuries show more errors than do children and adults
- Children with LH injuries show shift to increased RH activations

Verb generation and mental rotation

- Verb generation
 - Presentation of pictures of common objects
 - Instruction: "Say to yourself as many actions as you can do to or with each object presented"
- Mental rotation
 - Presentation of 2,G at 0^o, 135^o, 180^o, and 225^o
 - Decision about direction of letter/number
- Rest for both conditions
 - Presentation of cross

Post-acquisition SPM99 processing: Adult and Children groups

Steps in individual Analyses

Post-acquisition processing – Children-BI

Case study approach

Verb generation - adults

Verb generation -- children

Adults minus children

Verb generation—children with LH stroke

Verb generation – children with L-PVH

Laterality index

Proportion of anterior activation

Anterior activation in Verb Generation

Subjects

Mental Rotation Stimuli

Mental rotation - adults

Mental rotation -- children

Laterality index

Subjects

Proportion of anterior activation

Mental rotation

Overall summary

- Development of children with early brain injury favors developmental specialization view; language areas not completely predetermined
- Integrity of the entire brain supports launching language development
 - Children with RH damage often show initial delays
 - Consistent with ERP data (Mills and Neville)
 - RH remains available for language tasks under normal circumstances
 - RH can serve language if LH damaged
 - Effects of reorganized language minimally apparent in functional tasks such as conversation
Summary

- Alternate brain organizations may not be as effective as typical brain organizations for language processing
 - Children with brain injuries have lower scores on formal testing
 - Children with brain injuries have subtle delays under demanding circumstances
 - Children with brain injuries are slower at information processing

Summary

- fMRI suggests intriguing possibility of multiple reorganization patterns
 - L stroke had strong R anterior activations
 - L PVH had R laterality but minimal anterior activation
 - All may result in information processing inefficiencies
- Calls for systematic, larger imaging study
 - Correlations with behavioral data
 - Variations as a function of lesion, age, and performance level

Thank you.

