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Emergent Language

Brian MacWhinney

Camegie Mellon University

Abstract

Recent work in language acquisition has shown how linguistic form emerges
from the operation of self-organizing systems. The emergentist framework
emphasizes ways in which the formal structures of language emerge from the
interaction of social patterns, patterns implicit in the input, and pressures
arising from general aspects of the cognitive system. Emergentist models have
been developed to study the acquisition of anditory and articulatory patterns
during infancy and the ways in which the leaming of the first words emerges
from the linkage of auditory, articulatory, and conceptial systems, Neural
network models have also been used to study the learning of inflectional
markings and basic syntactic patterns. Using both neural network .modeliing
and concepts from the study of dynamic systems, it is possible to analyze
language learning as the integration of emergent dynamic systems.

If you spend some time watching the checkout lines at a supermarket, you
quickly find that the number of people gueued up in each line is roughly the
same. At peak times, you may find five or six people in a line waiting to check
out. At slower times, lines have only two or three waiting. There is no fixed rule
governing this pattern. Instead, the rule that equalizes the number of shoppers in
the various lines emerges from other basic facts about the goals and behavior of
shoppers and supermarket managers. This simple idea of emergence through
constraint satisfaction is currently being invoked as a central explanatory.
mechanism in many areas of cognitive science and neuroscience.

Given the often effortless nature of language use, the idea of viewing verbal
behavior as an emergent process seems particuiarly attractive. We can observe
speakers carrying on conversations on cellular phones while driving their cars in
rush hour traffic, and we can find accomplished seamstresses creating elaborate
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embroidery while conversing fluently. It is not only adult language processing that
seems effortless; language learning in children also appears natural and painless.

Despite these appearances, when linguists look at language learning and
processing, they find complex rules, categories, and symbols. How can we
reconcile these divergent perceptions? Omne possible reconciliation calls into
question the extent to which langnage leamning and processing actually function
in obedience to an explicit set of formal rules. According to this new view of
language learning and processing, the behaviors that we tend to characterize in
terms of rules and symbols are in fact emergent patterns that arise from the
interactions of other less complex or more stable underlying systems. I will refer
to this new viewpoint on language learning and processing as “emergentism”.

Proponents of functional linguistics have often spoken of grammar as an
emergent property of features of discourse (Du Bois 1987; Hopper & Thompson
1984), contrasting their functional analysis with formalist approaches to gram-
mar. The idea that grammar can emerge from discourse is fundamental to the
debate between functionalism and formalism in linguistics and psycholinguistics.
However, the emergence of grammar from discourse is only one aspect of a
much broader emergentist vision of the shape of human language. The shape of
human language is also tightly governed by the physiology of the vocal appara-
tus, the nature of the auditory system, and the development and decay of the
many cognitive systems that manage the processing of language. When we
consider these various additional constraints on the emergent shape of language,
we reach a broader characterization than that offered in functionalist accounts
that look only at discourse pressures.

Emergentist accounts have been formulated for a wide variety of linguistic
phenomena, ranging from segmental inventories, stress patterns, phonotactic
constraints, morphophonological alternations, lexical structures, pidginization,
second language leamning, historical change, on-line phrase attachment, and
thetorical structures. Formalisms that have been used to analyze the emergent
nature of these forms include connectionist networks, dynamic systems theory,
neuronal differentiation models, classifier systems, production-system architec-
tures, Bayesian models, Optimality Theory, and corpora studies.

The basic notion underlying emergentism is simple enough. Consider the
hexagonal shape of the cells in a honeycomb. There is nothing in the genetic
makeup of the honey bee that determines that each cell in the honey comb
should take on the form of a hexagon. However, when circles are packed
together, it turns out that packing distance is minimized when each circle has six
neighbors. This same principle also applies in three dimensions to spheres. When
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the fluid in these six neighboring honey cells is tightly compressed against its
neighbors, a hexagonal shape emerges. No rules are needed to control the shape
of each individual cell of the honeycomb; instead this form emerges from the
interaction of hundreds of small units. Nature j is replete with examples of this
type of formal emergence. The form of beaches and mountain ridges, the
geometry of snowflakes and crystals, the appearance of Jata morgana, and the
movement of the jet stream in the air and the Gulf Stream in the sea — all of
these patterns arise from interactions of physical principles with constraints
imposed by physical bodies. Even in the biological world, much of our somatic
form is emergent, whether it be the patterns of stripes on the tiger, the formation
of teeth into a uniform bite, the structuring of enzymes to catalyze organic
reactions, or our patterns of fingerprints and hair formations.-

1. Basic Assumptions

In this paper, we will explore three levels of emergent linguistic structure. The
first level involves the acquisition of basic lexical structures in small areas of
cortex called “local maps”. The second level involves the interaction between
lexical structures in terms of “lexical groups”. The third level involves the
processing of syntactic information across longer neural distances in “functional
neural circuits”. We will examine how linguistic form emerges from the interac-
tion of these three levels of neurolinguistic processing.

2. —is&r_nm of Nenral Networks

Connectionist models ‘are implemented in terms of artificial neural networks,
Neural networks that are able to learn from input are known as “adaptive neural
networks”. The architecture of an adaptive neural network can be specified in
terms of eight design features;

1. Units. The basic components of the network are a number of simple
elements called variously “neurons”, “units”, “cells”, or “nodes”. In Figure.
1, the units are labeled with letters such as “X,"

2. Connections. Neurons or pools of neurons are connected by a set of
pathways which are typically called “connections”. In most models, these
connections are unidirectional, going from a “sending” unit to a “receiving”
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unit. This uvnidirectionality reflects the fact that neural connections also
operate in only one direction. The only information conveyed across
connections is activation information. No signals or codes are passed. In
Figure 1, the connection between units x, and y; is marked with a thick line.

Fatterns of connectivity. Neurons are typically grouped into pools or layers.
Connections can operate within or between layers. In some models, there
are no within-layer connections; in others all units in a given layer are
interconnected. Units or layers can be further divided into three classes:

a. Input units which represent signals from earlier networks. These are
marked as “x” units in Figure 1.

b. Output units which represent the choices or decisions made by the
network. These are marked as “z” units in Figure 1.

c. Hidden units which represent additional units juxtaposed between
input and output for the purposes of computing more complex,
nonlinear relations. These are marked as “y” units in Figure 1.

Weights. Each connection has a numerical weight that is designed to
represent the degree to which it can convey activation from the sending unit
to the receiving unit. Learning is achieved by changing the weights on
connections. For example, the weight on the connection between x; and y,
is given as .54 in Figure 1.

Net inputs. The total amount of input from a sending neuron to a receiving
neuron is determined by multiplying the weights on each connection to the
receiving unit times the activation of the sending neuron. This “net input”
to the receiving unit is the sum of all such inputs from sending neurons. In
Figure 1, the net input to y, is .76, if we assume that the activation of X
and x, are both at “1” and the x,y, weight is .54 and the X5y, weight is 22,

Activation functions. Bach unit has a level of activation. These activation
levels can vary continnously between “0” and “1”. In order to determine a
new activation level, activation functions are applied to the net input.
Functions that “squash” high values can be used to make sure that all new
activations stay in the range of “0” to “1”. .

Thresholds and biases. Although activations can take on any value between
“0” and “1”, often thresholds and bias functions are used to force units to
be either fully “on™ or fully “off”.

A learning rule. The basic goal of training is to bring the neural net into a
state where it can take a given input and produce the correct output. To do
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this, a leamning rule is used to change the weights on the connection
Supervised learning rules need to rely on the presence of a target output :
the model for this changing of weights. Unsupervised learning rules do ne

rely on targets and correction, but use the structure of the input as the
guide to learning.

Figure 1. A Sample Adaptive Neural Network,

All connectionist networks share this common language of units, conmections,
weights, and learning rules. However, architectures differ markedly both in their
detailed patterns of connectivity and in the specific rules used for activation and
learning, For excellent, readable introductions to the theory and practice of neural
network modeling, the reader may wish to consult Bechtel and Abrahamsen
(1991) or Fausett (1994). For a mathematically more advanced treatment, see
Hertz, Krogh, and Palmer (1991).

3. Local Lexical Maps

Zo.nEum is more basic to language than the learning of new words. The child’s
first word often appears toward the beginning of the second year of life. But
word learning is not a sudden process. Rather, it depends on a whole range of
experiences and activities in which the child participates during the first year of
life. Some of these experiences involve producing non-conventional sounds
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through babbling. Another type of experience involves listening to the cadences
and phonetic forms of the words used by the adult community. Still another type
of experience involves the slow development of thinking about the various
categories of objects and events in the natural world. All of these activities and
experiences are prerequisites to the learning of the first words. About two or
three months before the first productive words are produced, we find some
evidence that the child has begun to acquire a passive comprehension of a few
of the most common words of the language. For example, the 14-month-cld who
has not yet produced the first word, may show an understanding of the word
“dog” by turning to a picture of a dog, rather than a picture of a cat, when the
word “dog” is uttered. It is difficult to measure the exact size of this comprehen-
sion vocabulary in the weeks preceding the first productive word, but it is
perhaps no more than 20 words in size.

During this early period of auditory learning, the child starts to form
associations between certain auditory patterns and particular meaningful interpre-
tations. In older models of lexical learning, the process of associating a sound
with a meaning involved the trivial formation of a single link. For example, in
Morton’s (1970) Logogen Model, the learning of a new word requires nothing
more than the linking up of one already available pattern or cluster to another.
The idea that auditory and semantic patterns form coherent clusters seems to
reflect real facts about the infant’s cognition. On the semantic level, one could
argue (Mervis 1984) that the child’s previous experience with dogs has served to
promote the consolidation of the concept of a “dog”. On the phonological level,
it also appears that repeated exposure to the consistent v_mnﬁ.n of “dog” also
leads to the emergence of a consolidated phonological pattern.

The self-organizing feature map (SOFM) framework of Kohonen (1982) and
Miikkulainen (1990) provides us with a way of characterizing these early
processes of semantic and phonological consolidation. In the framework of
SOFM models, word learning can be viewed as involving the development of
maps in which individual patterns can be stored and retrieved reliably. Three
types of local maps are involved in word learning: auditory maps, meaning maps,
and articulatory maps. Each of these three maps uses the same learning algo-
rithm. Figure 2 illustrates the activation of a particular node in an auditory map.
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auditory iexicon

AN

auditory features

Figure 2. A Seif-organizing Feature Map for Storing Auditory Patterns.

The input to this feature map involves a large number of auditory phonological
features taken from separate domains such as sibilance, formant transition
direction, formant duration, formant frequency, stop click timing, and others.
These are schematically represented as “auditory features™ at the bottom of
Figure 2. For the purposes of comiputational modeling, the multidimensional
space is compressed onto a 2-D topological space.

What makes this mapping process self-organizing is the fact that there is no
pre-established pattern for these mappings and no preordained relation between
particular nodes and particular feature patterns. The SOFM algorithm decides
which node on the map should be the “winner” for a particular input pattern. At
first, the weights on the map are set to small random values, When the first input
comes in, the random setting of these weights makes it so that, by chance, some
particular node is the one that is maximally responsive to the cument input
pattern. That node then decrements the activation levels on the other nodes, This
decrementation takes on the form of a “Mexican hat” or sombrero. Right around
the winner, related nodes are not decremented as much as are more distant
nodes. Because of the architecture of the relation between the input and the grid,
nodes that are nearby in the map come to respond to similar input patterns. For
example, words that begin with similar initial segments will tend to be assigned
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to neighboring units in the map. The Mexican hat shape obeyed by the competi-
tive intcractions in the SOFM conforms closely to known facts about lateral
inhibition and the redistribution of syntactic resources (Kohonen 1982) in cortical
tissue. The actual computational implementation of this framework uses a
computationally efficient algorithm that is faithful to these biological principles
(Miikkulainen 1990).

This system works well to encode large numbers of patterns. In one sample
simulation, we found that a 100 x 100 network with 10000 nodes can learmn up
to 6000 phonological patterns with an error rate of less than 1%. In this
implementation, we used eight floating-point numbers to generate the input. At
the beginning of learning, the first input vector of eight numbers led by chance
to somewhat stronger activation on one of the 10000 cells. This one slightly
more active cell then inhibits the activation of its competitors, according to the
Mexican hat function. As a result of this pattern of activation and inhibition,
inputs that are close in feature space end up activating cells in similar regions of
the map. Once a cell has won a particular competition, its activation is negatively
dampened to prevent it from winning for all of the inputs. Then, on the next
trial, another cell has a chance to win in the competition for the next sound-
meaning input pattern. This process repeats until all 6000 sound-meaning
patterns have developed some “specialist” cell in the feature map. During this
process, the dynamics of self-organization make it so that items with shared
features end up in similar regions of the feature map.

 We tracked the development of the feature map by computing the average
radius of the individual items. After learning the first 700 words, the average
radiuvs of each word was 70 cells; after 3 000 words, the radius was 8; after 5000
words the radius was 3; and after 6000 words the radius was only 1.5 cells.
Clearly, there is not much room for new lexical items in a feature map with
10000 cells that has already leamned 6 000 items. However, there is good reason
to think that the enormous number of cells in the human brain makes it so that
the size of the initial feature map is not an important limiting constraint on the
leamning of the lexicon by real children. We have found that there is no clear
upper limit on the ability of the SOFM to acquire more items, when it is given
a larger dimensionality.

3.1 Using Maps for Retrieval

In order to E&o_ additional aspects of lexical structure, the basic SOFM
architecture must be supplemented by additional connections. Miikkulainen
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(1990) did this by training reciprocal connections on two maps using Hebbian
learning. Figure 3 illustrates the relations of these two maps. In this figure, a
particular auditory form is associated with a particular semantic form or meaning,

auditory form semantic form

Figure 3. A Bidirectional Sound-meaning Association in a Feature Map.

Since neuronal connections can only fire in a single direction, training has to be
conducted separately in each direction. In our simulations, learning begins with
the consolidation of both the auditory and semantic maps according to the SOFM
competitive learning algorithm. Once patterns are established on the two basic
maps, Hebbian learning strengthens connections between units that are coactive
.on the sound map and the meaning map. This training is intended to represent
the actual process of word learning, during which the child hears a word at the
same time some meaningful aspect of the environment is being focused upon.
This proposed model is oversimplified in terms of both structure and
process. In structural terms, additional maps are needed to represent additional
aspects of lexical knowledge. In addition to the two maps given in Figure 3,
there must be a map that encodes output phonological form, since the child must
not only associate an auditory form to a semantic form, but must also associate
the auditory form to an articulatory form and an articulatory form to the semantic
form. Later, when the child learns to read and spell, there will also be maps for
orthographic and visual forms. In processing terms, the SOFM given in Figure 3
fails to express important aspects of the serial structure of auditory and articulatory
patterns. Later, we will discuss a lexical learning model developed by Gupta and
MacWhinney (1997) that deals in a more explicit way with issues of serial ordering.

3.2 Articulatory Scaffolding

The relation between a patiern in the auditory map and a pattern in the semantic
map is essentially arbitrary. There is nothing about the phonological shape of
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/kzt/ that corresponds in some patterned way to the meaning “cat”. However, the
relation between auditory and articulatory forms is far more systematic. Once an
adult has been cxposed to a new auditory form, the corresponding articulatory
form is extremely easy to produce. When we hear someone say that their last
name is “Tomingo” we can quickly reproduce that name, even after only one trial.

For the child, the mapping from a new auditory form to an articulatory form
is a bit more difficult, but it is still the case that audition serves to “scaffold”
articulation. What this means is that the auditory form remains an active target
as we attempt to match the form in articulation. By then listening to our articula-
tion, we can verify the match of our output to the target auditory form. This
allows us to correct errors and to set up an excitatory feedback loop between the
two forms that stabilizes the new articulatory shape. Gupta and MacWhinney
(1997) show how the development of this correspondence is based primarily on
the mapping of correspondences between auditory fragments and articulatory
fragments. In the simplest case, these fragments are syllables. For example, once
the child has learned how to produce the sylable fgo/ of “go”, this auditory-
articulatory correspondence is available for use in any new word. Even individual
segments can be extracted through analysis. Some of this leaming occurs during
late babbling, but it is consolidated with the first words. Over time, the links
between auditory and articulatory forms become more extensive.

3.3 Prosody and Time

Both the auditory and the articulatory maps must be structured to deal effectively
with multisyllabic patterns. In order to process multisyllabic words, the input to
the basic lexical map needs to derive from preprocessing by a SOFM which
identifies individual syllables. This map stores a large number of identifiable
syllabic forms such as /ba/, /kib/, and /Uv/, as well as subsyllabic forms such as
fs/ or /n/. The input to.this SOFM arrives in a sequential way, but each syllable
is processed as a separate temporal chunk. This is easy to do on the level of the
syllable, because there are many cues that tell whether a segment is in the
position of the onset, the nucleus, or the coda. Because most coarticulation
effects occur within the syllable, this is an effective way of dealing with low-
level context effects. The syllabic processor operates repeatedly through the word
to encode a series of activations of syllables.

The functioning of this syllabic map is supplemented by a process that
associates particular syllabic vectors with additional prosodic information. This
processor attends not to the segmental forms in the speech wave, but to the
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overall prosodic structure. Prosodic information works in terms of the system of
metrical feet to encode the status of a given syllable as being in an iambic or
trochaic foot and being either a strong or weak syllable. It is the union of these

- prosodic features with the basic segmental syllabic features which then serve as

input to the anditory lexical SOFM. In a word like “banana” the syllabic
processor operates repeatedly to encode three syllables. However, without the
additional metrical information, these three encodings could be perceived as the
patterns “nabana” or “nanaba”, as well as “banana”. In order to uniquely encode
“banana”, the first syllable /ba/ must be coded as a first foot weak beat, the
second syllable /na/ must be coded as the strong beat and the final /na/ must be
coded as the second foot weak beat. Thus, the complete input to the lexical map
includes both segmental and prosodic information. It is this complete merged
pattern which is then associated to the semantic pattern to specify emergent
lexical items.

3.4 Acquiring Inflectional Markers

The local lexical map can be used to acquire not only stems such as “dog” or
“jump” but also affixes such as the plural suffix or the past tense suffix. Stems
can be learned directly. However, in order to model the learning of affixes, we
need to examine an additional process called “masking” (Burgess 1995; Burgess
& Hitch 1992; Carpenter, Grossberg & Reynolds 1991; Cohen & Grossberg
1987; Grossberg 1987). Let us use the learning of the English past tense suffix
to illustrate how masking works.

1. The net learns a set of present tense verbs, along with the corresponding
past tense forms. We can refer to this initial phase of learning as “rote”
learning. These rote-leamned forms include regular pairs such as “jump —
jumped” and “want — wanted”, as well as irregulars such as “run — ran”
and “take — took”.

2. The network then learns a new present tense such as “push” for which the
corresponding past tense form has not yet been learned.

3. Then the child hears the word “pushed” with the auditory form fpUS/ and
the semantic pattern “push + past”. On the auditory map, the node corre-
sponding to /pUS/ is the closest match. On the semantic map, the node
corresponding to “push + present” is the closest match.

4. A pattern of bidirectional activation is established between the two maps. It

is this bidirectional activation that supports the process of “masking”.
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Masking works to drain activation from nodes and features that are coactive
in the two maps. In the current example, the features of the stem on both
maps are all masked out, leaving the feature “past tense” as unmasked on
the semantic map and the features corresponding to the final /id/ as un-
masked on the auditory map,

5. The unmasked phonology is then associated with the unmasked semantics
through the same type of Hebbian learning that is used to produce the basic
rote-learning of new lexical forms.

This implements in a neuronally plausible way the process of morphological
extraction by analysis. In the terms of MacWhinney (1978), affix analysis
involves associating the “unexpressed” with the “uncomprehended”. This
approach to the problem of learning the English past tense solves two problems
faced by earlier nonlexical models. First, the model succeeds in capturing both
rote lexicalization and combinatorial lexicalization within a single connectionist
model. Rote forms are picked up directly on the feature map. Combinatorial
forms are created by the isolation of the suffix through masking and the use of
masking in production,

Second, having learned to comprehend the past tense in a productive way,
the child can then learn the association between the anditory pattern and an
articulatory representation. This occurs when the child tries to produce the new
form. The activation of a semantic pattern leads to the activation of an auditory
paitern which then sets up a temporary excitatory feedback loop to the articulato-
1y map. During the process of scaffolding, the auditory form remains active as
we attempt to match the form in articulation. By then listening to our articula-
tion, we can verify the match, correct errors, and set up an excitatory feedback
loop between the two forms that stabilizes the new articulatory shape. As we
noted earlier, the process of developing a match between the auditory and
articulatory forms proceeds syllable by syllable by relying on prosody to encode
the temporal properties of successive syllables.

3.5 Inflectional Marking and the Logical Problem

In the network we have been discussing, a single lexical feature map can produce
both a rote form like “went” and a productive form like “*poed”. The fact that
both can be produced in the same lexical feature map allows us to begin work on
a general solution to the “logical problem of language acquisition” (Baker &
McCarthy 1981; Gleitman 1990; Gleitman, Newport & Gleitman 1984; Morgan
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& Travis 1989; Pinker 1984; Pinker 1989; Wexler & Culicover 1980). In the
case of the competition between “went” and “*goed”, we expect “went” to
become solidified over time because of its repeated occurrence in the input. The
form “*goed”, on the other hand, is supported only by the presence of the -ed
form. Figure 4 illustrates this competition:

go + PAST

PN

emergent
episodic lexical
support properties

Figure 4. Competition between Episodic and Combinatorial Knowledge.

This particular competition is an example of what Baker and McCarthy (1981)

calls a “benign exception to the logical problem”. The exception is considered
benign because the child can learn to block overgeneralization by assuming that
there is basically only one way of saying “went”. This Uniqueness Constraint is
thought to distinguish benign and non-benign exceptions to the logical problem.
However, from the viewpoint of the Competition Model account we are con-
structing here, all exceptions are benign.

The basic idea here is that, when a child overgeneralizes and produces
“*goed”, the system itself contains a mechanism that will eventually force
recovery. In cases of overgeneralization, alternative expressions compete for the
same meaning. One of these forms receives episodic support from the actual
linguistic input. This episodic support grows slowly over time. The other form
arises productively from the operation of analogistic pressures. When episodic
support does not agree with these analogistic pressures, the episodic support
eventually comes to dominate and the child recovers from the overgeneralization.
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This is done without negative evidence, solely on the basis of positive support
for the form receiving episodic confirmation.

4. Lexical Groups

The second level of linguistic structure we will discuss is the level of the lexical
group. The formation of Level 2 lexical groups is an emergent process that
depends on the existence of a Level 1 substrate of lexical items organized into
SOFMs. The force that drives the emergence of lexical groups and their related
syntactic properties is the linking of words into morphological and syntactic
combinations. We can refer to the properties that emerge in this way as “emer-
gent lexical properties”. In this section, we will review some of these emergent

propetrties,
4.1 Inflectional Morphology and Lexical Groups

Having acquired productive use of inflectional morphology, the child can begin
to learn how to combine inflections with stems. The emergentist approach to
language acquisition holds that the patterns governing these combinations emerge
from information implicit in the lexical map. To illustrate how this works, let us
take as an example the network model of German gender learning developed by
MacWhinney, Leinbach, Taraban, and McDonald (1989). This network is
designed to model how German children learn how to select one of the six
different forms of the German definite article: “der”, “die”, “das”, “des”, “dem”,
or “den”. Which of the six forms of the article should be used to modify a given
noun in German depends on three additional features of the noun: its gender
(masculine, feminine, or neuter), its number (singular or plural), and its role
within the sentence (subject, possessor, direct object, prepositional object, or
indirect object). To make matters worse, assignment of nouns to gender catego-
ries is often quite nonintuitive. For example, the word for “fork” is feminine, the
word for “spoon” is masculine, and the word for “knife” is neuter.

Although these relations are indeed complex, MacWhinney et al. show that
it is possible to construct a neural network that learns the German system from
the available cues. The MacWhinney efal. model, like most current connectionist
models, involves a level of input units, a level of hidden units, and a level of
output units (Figure 5). Bach of these levels or layers contains a number of
discrete units or nodes. For example, in the MacWhinney ef al. model, the 35
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units within the input level represent features of the noun that is to be modified
by the article. Each of the two hidden unit levels includes multiple units that
represent combinations of these input-level features. The six outpat umits
represent the six forms of the German definite article.

OUTPUT UNITS ﬁ der die das des dem den g
|

HIDDEN UNITS

20 gender/
number units

e

F.Em phonological 5 meaning J T.\ case cues 11 phono g

INPUT UNITS

Em.E,o 5. A Back Propagation Model for German Declension,

This network successfully learned its input corpus and displayed a good
ability to generalize gender assignment to new nouns. It was also able to take a
nominal form presented in one case and use it to predict a form in another case.
The overgeneralization patterns the model produced matched up well with those
produced by children. Despite its successes, this model and a similar model for
English (MacWhinney & Leinbach 1991) faced certain basic problems. These
problems all arose from the fact that the model assigned no privileged role to

‘words as lexical items. Instead, all learning was based on an input composed of

phonological patterns. A clear example of this type of problem arises in the case
of the sound /rIN/ which represents three different verb meanings (to “ring” a
bell, to “wring” out the clothes, and to “ring” the city with troops). The past
tense forms of these verbs will be “rang”, “wrung”, and “ringed” depending on
the meaning of the stem. By itself, the back propagation net cannot distinguish
homophonic relations of this type. However, when a Level 2 back propagation
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network is joined to a Level 1T SOFM, homophony is no longer a problem,
because the various homophonic meanings of “ring” are now representationally
distinct in terms of the input that the SOFM can provide to the back propagation
network. The reason for this is simply that the lexical SOFM contains semantic
information which can be passed on to promote disambiguation in the back
propagation network.

Gupta and MacWhinney (1992) showed how the addition of lexical informa-
tion to the back propagation network for German leads to improved performance.
Because the Gupta and MacWhinney model combines two different architectures,
inflectional formations can be produced in- several different ways. First, the
SOFM can generate both regular and irregular forms by rote. Second, because
the SOFM includes affixes along with stems, regular affixation can be produced
through combination. Third, the pattern generalization processes found in the
back propagation network can help produce irregularizations. For example, the
past tense forms “wrung” and “rang” could be produced either directly by rote
or by generalization using the back propagation network.

4.2 Argument Frame Induction from Lexical Groups

The strategy of linking a Level 2 back propagation network to the Level 1 lexical
SOFM also helps us account for the learning of syntactic patterns. The Competi-
tion Model (MacWhinney 1988) has consistently emphasized the role of Iexical
argument (“valency” or “dependency”) relations as the basic controllers of
syntactic structure. This analysis was grounded originally on the theories of
Lexical Functional Grammar (LFG) (Bresnan 1982) and Head-driven Phrase
Structure Grammar (HPSG) (Pollard & Sag 1994) that developed during the
early 1980s. The role of lexical predicates in determining syntactic structure is
now widely accepted. However, there is still no agreement regarding the ways in
which children learn to attach argument frames to lexical items or groups of
lexical items. Non-connectionist proposals regarding this learning can be found
in Brent (1994), MacWhinney (1988), and Pinker (1984). Within a connectionist
framework, the major attempts to deal with syntactic processing include Elman
(1990), McClelland and Kawamoto (1986), Miikkulainen (1993), and St. John
(1992). However, none of these accounts comes to grips with the relation
between argument frames and specific lexical items.

We know that the induction of argument relations must occur in parallel
with the process of learning new words. To illustrate this process, consider an
example in which the child already knows the words “Mommy” and “Daddy”,
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but does not know the word “like”. Given this state of lexical knowledge, the
sentence “Daddy likes Mommy” would be represented in this way:

dadi larks mami
Daddy | unknown ' Mommy

For the first and third phonological stretches, there are lexical items that match.
These strings and the semantics they represent are masked. The unknown stretch
is not masked and therefore stimulates lexical learning of the new word “likes”.
The core of the learning for “likes” is the association of the sound /laik/ with the
meaning “like”, In addition to this basic Level 1 lexical association, the child
must also construct additional links to Level 2 argument relations. At first these
patterns are grounded on a few lexical items. However, these Level 2 patterns
quickly generalize to apply to lexical groups. The initial lexical argument frame
for the word “likes” is:

argl: preposed, “Daddy”, experiencer
arg2: postposed, “Mommy”, experience

Further exposures to sentences such as “Daddy likes pancakes” or “Billy likes
turtles” will soon generalize the dependency frame for “likes” to:

argl: preposed, experiencer
arg?: postposed, experience

No theoretical weight is placed on the notion of “experiencer” or “experience”
and different learners may conceptualize this role in different ways.

Adjectives typically have only one argument. Prepositions have two — one
for the object of the preposition and a second for the head of the prepositional
phrase. Verbs can have as many as three argurnents. For each lexical item, we
can refer to these arguments as argl, arg2, and arg3. When a group of words
share a common set of semantic relations with a particular argument, they form
a lexical group argument frame, or, more succinctly, a “group frame”. For
example, words like “send” or “promise™ share the syntactic property of permit-
ting a double object construction as in “Tim promised Mary the book”. Pinker
(1989) and others have argued that there are a variety of semantic cues which work
together to decide which verbs allow this type of double object construction.

4.3 Relations between Level 1 and Level 2

Level 1 information is stored in SOFMs and Level 2 information is organized
into back propagation networks dependent on Level 1 information. Figure 6
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sandpaper to something. MacWhinney (1989) talks about these semantic exten-
sion effects in terms of a process of “pushy polysemy”.

5. Functional Neural Circuits

The third level of neurolinguistic structure is the level of the functional neural
circuit. This level requires the integration of information across large distances
in the cerebral cortex. A prototypical example of a functional neural circuit is the
phonological rehearsal loop that supports verbal short-term memory (Gathercole
& Baddeley 1993; Gupta & MacWhinney 1994). Recent work with neural
imaging (Grasby ef al. 1993; Paulesu, Frith & Frackowiak 1993) indicates that
this loop is based on the coparticipation of auditory processing areas in the
superior temporal gyrus, attentional regions in the frontal cortex, and articulatory
areas in the motor cortex. Similar posterior-frontal functional neural circuits have
also been identified in visual processing.

Unlike Level 1 and Level 2 processing, the type of processing that requires
the use of functional neural circuits can place severe demands on attentional
resources. As long as sentence processing can emerge from Level 2 use of
argument frame structures, a minimal demand is placed on additional attentional
resources. As each predicate is linked to its several arguments, the listener shifts
focus away from the individual lexical items onto the emerging sentence
interpretation (Gernsbacher 1990; MacWhinney 1977). In effect, every word that
is linked to the growing interpretation is “masked” in Level 1 lexical maps. This
type of local processing is highly automatic and essentially effortless. However,
some syntactic structures place a heavy demand on working memory. For
example, in a sentence such as “The dog the cow the pig chased kicked barked”,
the listener cannot construct interpretations by linking each word to its neighbor.
Instead the string of three nouns and three verbs have to be stored in unasso-
ciated form in working memory, while the listener attempts to find meaningful
clusters. Sentences of this type, while technically grammatical, are notoriously
difficult to process. Accumulations of unattached nouns in relative clauses are a
well-known problem for speakers of SOV languages such as Hungarian (Mac
Whinney & Pléh 1988) and Japanese (Hakuta 1981).
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5.1 Conservatism, Functional Circuits, and the Logical Problem

The Competition Model emphasizes the extent to which lexical competition can
solve the logical problem of language acquisition. However, there are certain
complex syntactic structures for which the lexical solution is more questionabie.

For example, O’Grady (1987) notes that children learn positive contexts for wh-
movement in this order:

(1) What did the little girl hit __ with the block today?
(2)  What did the boy play with __ behind his mother?
(3)  What did the boy read a story about __ this morning?

Although one might be able to formulate a lexical basis for the processing of
these wh-movement patterns, it is more likely that they involve a form of
sentence memory that relies rather more on functional neural circuits and less on
lexically-organized information, What is interesting is the fact that, precisely in
these non-lexical contexts, children’s tendency toward conservatism seems to be
maximized. Children are never presented with contexts such as (4):

(4) *What did the boy with ___ read a story this morning?

Because children approach the leaming of these contexts conservatively, they
seldom make overgeneralizations of this type and seldom attempt wh-movement
in this particular context. The general principle seems to be that overgenerali-
zation occurs primarily with Leve] 2 argument frame patterns and not with Level
3 long-distance movement patterns. For Level 3 pattemns, the attentional and
computational difficulties involved lead children to adopt a conservative approach
that minimizes the role of overgeneralization. This is not to say that overgenerali-
zation of Jong-distance movement never occurs, However, numerically speaking,
it is much rarer than argument frame overgeneralization. Because of this
conservativism, attribution of language acquisition to innate knowledge of
conditions blocking subjacency violations seems unmotivated.

Summary

At this point, it may be useful to summarize the core assumptions being made in
this account of langnage emergence:
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1. The model assumes an auditory processing mechanism that can extract informa-
ton regarding the onset, nucleus, and coda elements of individual syllables.

2. The information from the syllabic processor is supplemented by information
from the prosodic processor which marks the position of each syllable in
terms of feet and beats.

3. Anditory and semantic information about words is encoded in a self-
organizing feature map.

4. Associations between sound and meaning are formed through Hebbian
learning.

5. Auditory information can be used to scaffold the construction of an articula-
tory representation. This is done in terms of syllables and prosodic struc-
tures.

6. Masking in lexical recognition provides the support for the extraction of
new affixes.

7. Changes in stems and affixes can be controlled through a system of modifi-
cations using the back propagation algorithm.

8.  Sentence interpretation requires the linking of words in terms of argument
structures. These structures are learned through frame generalization in back
propagation networks which receive input from the lexical map.

9. The processing of complex syntactic structures and lists of words requires
the involvement of functional neural circuits including frontal attentional
processing and temporal lobe verbal memory and rehearsal.

In this model of language development, the first commitment that the brain
makes is to the encoding of auditory, articulatory, and lexical information in
localized maps. After this information is consolidated, back propagation systems
develop to fine-tune the interactions of lexical items, and functional neural
circuits control capacity-intensive aspects of sentence processing.

Although the developments we have discussed lead to a great complexity of
patterns and constructions, the underlying elements of feature maps, masking,
argument frames, and rehearsal loops from which these patterns emerge are
themselves cognitively basic structures grounded in fundamental properties of
neural structure and functioning. Some aspects of these structures are probably
basic to all of mammalian cognition. However, the great elaboration of lexical
structures that we find in human language point to the extensive elaboration of
earlier structures during the million years of human evolution. Most recently, the
ovetlay of functional neural circuits between areas such as the frontal attentional
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areas and the temporal auditory areas has led to further species-specific advances
in the capacity for learning and using language. Moreover, the specific elabora-
tion of lexical feature maps also appears to be a specifically human adaptation.
Although this model tends to emphasize the cognitive adaptations involved in
supporting language processing, it would be a mistake to ignore the important
changes in social structure and interpersonal subjectivity that have also supported
the evolution of human language. Hopefully, continuing rapid advances in our
understanding of brain function and structure will allow us to soon begin to
understand how these emotional and social underpinnings support the computa-
tional and cognitive structures we have discussed here.

These biological and cognitive aspects of an emergentist account of human
language will eventually need to be related to the equally important social and
discourse pressures that control the shape of grammar and the lexicon. Together,
these various emergentist visions allow us to construct a new view of human
language that goes beyond the simple debate between functionalism and formal-

ism and emphasizes the interplay of alternative streams, mechanisms, and
processes of emergence.
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Underspecification and Modularity in Early Syntax

A formalist perspective on language acquisition

Nina Hyams
UCLA

Abstract

In this paper, we will review a range of cross-linguistic empirical evidence
supporting the view that “telegraphic” children have a rich and complex
syntax, including knowledge of functional structure and of language-specific
parameter values associated with functional categories. We argue that the
opticnality of functional elements — finiteness, determiners, subject pronouns
— in early language arises through the interaction of a rather well-developed
grammar with an immature pragmatic system. We will show that the expres-
sion of certain functional elements is dependent on the expression of others,
for exaraple, finiteness on the verb is contingent upon the type of subject. We
suggest that functionalist accounts of early language, as well as performance
accounts which attribute the omission of these elements to a processing
bottleneck, fail on empirical grounds, The syntactic regularities which are
observed are most adequately explained within a modular framework. We will
also briefly discuss the logical problem of language acquisition (LPLA), in
connection with functional underspecification.

1. Introduction: Modularity and language development

One of the most striking aspects of early language is the apparent optionality of
various functional elements, such as pronouns, verbal inflection, and determiners.
These elements, and the syntactic categories that contain them, constitute the
syntactic frame of the sentence, providing a skeleton for the “meatier”, more



