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Lexicalist Connectionism

BRIAN MACWHINNEY

2.1. Introduction

Linguistic behaviour is governed by a rigid set of social conventions or ‘rules’.
If we wake up one morning and decide deliberately to throw all these conven-
tions to the wind, no one would understand us. Indeed, even our best friends
might think we had gone quite insane. In everyday language, we could say that
we had decided to ‘break the rules’ of English grammar. Of course, force of habit
keeps us from striking off on this iconoclastic course. Having spent so many
years of our lives cooperatively following ‘the rules’, it is easier to continue to
follow them, rather than wandering off into new territory. This view of linguistic
rules as social conventions and habits is grounded firmly on everyday experience
and common sense. | think it is a view that virtually everyone accepts.

During the 1960s and 1970s, scientists took this common sense idea of a lin-
guistic rule and reworked it into a basic principle underlying artificial intelli-
gence (Al), Chomskyan theoretical linguistics, and cognitive psychology. By
viewing the brain as a computer, they began to think of the mind as a system
for transforming symbolic strings according to well-specified rules. The vision
of human language as a system of formal rules was an important ingredient
underlying two decades of work in linguistics and cognitive science. This work
led to the emergence of complex and impressive systems of rules and symbols
based on what I have called the ‘Big Mean Rules’ (MacWhinney 1994) and the
‘Big Mean Flowcharts’ which were systems designed to learn the Big Mean Rules.

In recent years, the empirical underpinnings of these great symbolic systems
have become increasingly shaky and vulnerable. Two basic observational prob-
lems faced by all of these analyses are the fact that no developmental psycholo-
gist ever observed a child learning a rule and that no neuroscientist ever traced
the neural substrate of either a rule or a symbol. Beginning in the 1970s and
continuing up to the present, attempts to provide the necessary demonstrations
of the psychological reality of rules in adults (Fodor, Bever, and Garrett 1974;
Ohala, 1.J. 1974a,b; Ohala, M. 1974; Trammell 1978; Linell 1979; Jaeger 1984) have
yielded uniformly disappointing results. More recently, systems of rules have
been supplemented with innate parameters, triggers, and constraint satisfaction
hierarchies designed to minimize the size of the core rule component. However,
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these new conceptual devices have ushered in a new set of empirical worries,
as attempts to match the parameters, triggers, and constraints to the facts of
language learning have failed to yield consistent results (Meisel 1995).

Given these doubts and empirical failures, it made sense for researchers to
begin to explore alternatives to symbols and rules. In the late 1980s, work in
connectionist modelling (Rumelhart and McClelland 1986) began to challenge
the necessity of linguistic rules and categories, focusing attention instead on
models based on simple, observable cues and connections between these cues.
These new models sought to correct a fundamental, fatal flaw inherent in sym-
bolic models: the problem of excessive descriptive power.

The great power of Al systems derives from the computational architecture
of the von Neumann serial computer and the application of this architecture to
human cognition by Simon, Newell, and their followers (Newell and Simon 1972;
Klahr and Kotovsky 1991). In the digital computer, once a symbol is stored in
a location in computer memory (RAM), it then becomes fully accessible to any
rule that wants to access it. It is this availability of symbols in a uniformly ad-
dressable memory that provides the von Neumann computer architecture with
symbol passing, generativity, and scalability. When this hardware architecture is
supplemented by a high-level Al programming language, such as ACT-R (Ander-
son 1993), the expressive capacity of the system is virtually limitless. A modeller
can take a few symbols, concatenate them into rules and, magically, the com-
puter will conjure up a working model of mental processing.

However, these Al models are at the same time both too powerful and too
weak. They are too powerful in that they allow one to model the learning of
things that could never in reality be learned. At the same time, they are too
weak in that they fail to generalize properly across language types and patterns.
Moreover, attempts to identify a uniquely correct model without adding further
constraints have been shown to be impossible in principle (Anderson 1978).
Neural nets (Hopfield 1982; Kohonen 1982; Grossberg 1987) limit this descriptive
power by imposing two stringent limitations on computational models: a prohi-
bition against symbol passing and an insistence on self-organization.

Neural networks require that the computations involved in the models echo
the connectionist architecture of the brain. The basic constraint involved here
is the prohibition against symbol passing. The clearest example of symbol pass-
ing is a simple pair of rewrite rules such as the ones that expand a sentence in
a noun phrase and verb phrase:

1. S— NP + VP
2. VP > V + NP

Here, the symbol VP’ generated by rule 1 is passed on to rule 2 for further
expansion. In fact, rewrite rules are nothing much more than symbol passing
devices, whose chief function is to pass symbols about until finally sounds and
words are activated (MacWhinney and Anderson 1986).
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However, neuroscience has shown that the brain cannot pass symbols. This
is because it cannot use memory addresses to bind variables, since there is no
neural mechanism that can assign an absolute ‘address’ to a particular neuron
(Squire 1987). Neurons do not send Morse code, symbols do not run down syn-
apses, and brain waves do not pass phrase structures. Unlike the computer, the
brain has no general scheme for register assignment, data pathing, or memory
addressing. Moreover, the individual components of the neural system do not
have the reliability of the electrical components of a standard digital computer
(von Neumann 1956). In general, the brain provides no obvious support for the
symbol passing architecture that provides the power underlying the von
Neumann machine. Instead, computation in the brain appears to rely ultimately
on the formation of redundant connections between individual neurons.

By itself, the requirement that computation be performed locally without
symbol passing or homunculi is not enough to fully constrain descriptive power.
One could still hand-wire a connectionist system to perform a specific function
or behaviour. To do this, one actually has to ‘go inside the system’ and set a
value for individual nodes by hand. By detailed weight setting and the use of
gating and polling neurons, virtually any function can be wired into a neural net
(Hertz, Krogh, and Palmer 1991). An early example of a fully hand-wired
connectionist architecture was Lamb’s (1966) stratificational grammar. Although
Lamb explicitly warned the reader that the labels on individual nodes were not
‘really there’, he never provided a mechanism for getting a network to take on
the shape required by his insightful linguistic theory.

More recently, we have seen hand-wired connectionist models in areas such as
speech errors (Stemberger 198s; Dell 1986; MacWhinney and Anderson 1986),
ambiguity resolution (Cottrell 1987), and lexical activation Marslen-Wilson 1987;
Norris 1994). The ‘implementational’ approach to hand-wiring spares the
modeller the tedium of hand-wiring by running the wiring procedure oft sym-
bolic templates. For example, Touretzky (1990) has shown that there are tech-
niques for bottling the full power of a LISP-based production system architec-
ture into a neural net. These demonstrations are important because they show
how difficult it is to control excessive modelling power. However, they tell us
little about how language is implemented in the brain.

In order fully to constrain descriptive power, modellers must match the
constraint against symbol passing with the requirement that networks be self-
organizing. The notion of self-organization can be best understood in terms of
simple physical systems. Perhaps you have noted that each of the cells of a bee’s
honeycomb assumes a clear hexagonal shape. Is this shape carefully hand-crafted
cell by cell by each and every honeybee? No, it simply emerges through self-
organization as the best solution to the problem of packing a certain quantity
of honey cells into a certain volume.

Neural networks acquire their shape through a similar, albeit more complex,
self-organizing process. For example, the algorithm underlying the Kohonen
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feature map network works in a way that encourages units that behave similarly
to move toward spatially similar places on the feature map. It is this property
of neural nets that makes them particularly interesting to the developmental
psychologist and which also poses the greatest challenge to detailed modelling
work. When the prohibition against symbol passing is combined with the de-
mand for self-organization, the class of potential models of language learning
becomes extremely limited. In fact, there is currently no detailed model of lan-
guage acquisition that can satisfy these two criteria. Is this evidence that the
criteria are too strict? I think not. Rather it is evidence that we can use these
criteria to constrain our search for a truly plausible model of language acquisi-
tion. More importantly, it appears that those models which come closest to
satisfying these criteria are also the same models that display further interesting
and important properties, such as category leakage (McClelland and Kawamato
1986), graceful degradation (Hinton and Shallice 1991; Harley and MacAndrew
1992; Marchman 1992), and property emergence (MacWhinney et al. 1989).

When these twin constraints are taken seriously, along with the standard con-
ditions that must be imposed on any formal model (MacWhinney 1978b), build-
ing successful models becomes a tough job. When we add a third constraint—
the need to demonstrate scalability or the ability to expand the model to cover
more and more of a given problem domain—building powerful connectionist
models becomes a nearly impossible task. Often a modeller decides to make
headway by ignoring the scalability constraint and confronting only the first two
constraints. This is done by building small ‘toy’ models that account for only
very small pieces of the language acquisition puzzle. For example, some networks
are constrained to well-defined topics such as the acquisition of the English past
tense (Cottrell and Plunkett 1991) or German gender {MacWhinney et al. 1989).
Other models have focused on small slices across larger problems such as ques-
tion answering (St. John 1992) or word recognition (McClelland and Elman
1986). Some of these toy models may use only a few dozen sentences or a few
dozen words. When one attempts to add additional words or sentences to these
models, their performance often begins to degenerate. These problems with
inadequate scalability are particularly serious in the study of language acquisi-
tion, since the move from a vocabulary of 500 words to a vocabulary of 700
words is a smooth accretional transition for the language-learning child. If
connectionist models are to provide serious alternatives to symbolic models, it
is crucial that they directly address each of these three issues: scalability, symbol
passing, and self-organization. Any attempt to ignore one of these constraints
detracts from the impact of the connectionist enterprise.

2.2. Grand Pretensions, Modest Reality

Like the symbolic paradigm before it, the connectionist paradigm seeks to

Lexicalist Connectionism 13

provide a general model of human cognition. Because it has staked out such a
wide territory, connectionism is committed to providing an account of all of the
core issues in language acquisition, including grammatical development, lexical
learning, phonological development, second language learning, and the process-
ing of language by the brain. Despite these grand pretensions, the reality of
connectionist modelling is more sober and modest. In fact, much of the work
to date has focused on the learning of narrow aspects of inflectional morphology
in languages like English and German. While limited, work in this area has
taught us a great deal. This chapter sketches out the achievements of connec-
tionist models in this well-researched area and then examines how we can move
from these preliminary achievements to a fuller, more explanatory, unified
approach to the core issues facing language acquisition theory.

Let us begin by reviewing some recent connectionist models of the learning
of inflectional morphology. The first study of this topic was a model of English
past tense marking presented by Rumelhart and McClelland (1986). A more fully
elaborated version of this model was developed by MacWhinney and Leinbach
(1991). The task of these models was to convert the stem of an English verb into
another inflected form, such as the past tense. For example, given a stem such
as ‘eat’, the model could produce ‘eats’, ‘eating’, ‘ate’, or ‘eaten’.

Like all connectionist models, this model based its performance on the devel-
opment of the weights on the connections between a large collection of ‘units’.
The pattern of inputs and the connections between units was designed to imple-
ment the pattern of an autosegmental grid that has been developed in phonolog-
ical theory (Goldsmith 1976; Nespor and Vogel 1986). The idea is that each
vowel or consonant sound is a bundle of features that sits inside a slot within
the framework or grid of the syllable. Words, in turn, are formed from combi-
nations of syllables in a metrical grid. The MacWhinney-Leinbach model used
12 consonantal slots and six vowel slots and allowed for words of up to three
syllables. The segments of the stem were filled into this grid in right-justified
fashion (MacWhinney 1993), as in this example for the word ‘bet’:

Right justified: CCC VV CCC VV CCb VE CCt

A further syllable was reserved for the suffix in the output. Each of the slots was
in turn composed of a group of feature units. Since each of these feature units
was bound to its particular slot, we can think of each unitas a slot/feature unit.
For example, the first consonantal slot in the representation for ‘bet” would have
active units for the labial, consonantal, and voiced features required for the
sound /b/. Each of the consonantal slots had ten units and each of the vowel
slots had eight units. The network is displayed in Figure 2.1.

The complete training corpus used 6,949 different verb forms, derived from
the 2,161 highest frequency verbs in English (Francis and Kucera 1982). Of these
2,161 verbs, 118 were irregulars and 2,043 were regulars. The frequency with
which a given form was included in the training epochs was determined by its
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Figure 2.1. Neural network model for English
conjugation

frequency in the Francis and Kucera (1982) word-frequency list. The highest
frequency verbs were included most often. Learning in the model was controlled
by the backpropagation algorithm (Rumelhart, Hinton, and Williams 1986).

The network did an excellent job learning its input corpus, producing the
correct output forms for g7 per cent of the forms. At the end of 24,000 epochs
of training, the only forms that it was still missing were low-frequency irregulars
such as ‘bled’ or ‘underwent’. Generalization testing showed that most new verbs
were produced in the regular past, but that a few forms were treated as irregu-
lars. Additional generalization testing is reported in MacWhinney (1993) and
Ling and Marinov (1993).

English is a relatively poor language, at least in regard to its system of inflec-
tional morphology. It has virtually no marking of case or gender. Nouns have
only a single basic suffix for plurality and virtually the same suffix for the pos-
sessive. Although there are a few irregular past tense verbs, even the system of
verbal morphology is fairly simple. Fortunately, we do not have to look far afield
for a more challenging problem. Fven a closely related language like German
presents us with a far richer system of inflectional morphology. So rich, indeed,
that Mark Twain once complained that:

a person who has not studied German can form no idea of what a perplexing language
it is . . . Every noun has a gender, and there is no sense or system in the distribution; so
the gender of each must be learned separately and by heart. There is no other way. To
do this, one has to have memory like a memorandum book. In German, a young lady
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has no sex, while a turnip has. Think what overwrought reverence that shows for the
turnip, and what callous disrespect for the girl.

Any English speaker who has studied German, be it in the context of the class-
room or in the country itself, has probably reached a very similar conclusion.

The vagaries of German gender are compounded by the fact that written Ger-
man still clings to a system of case-marking only slightly simpler than that found
in Classical Latin. For example, the definite article is declined through all four
cases and all three genders in the singular and across all four cases with gender
neutralized in the plural. The result of these various obligatory markings is the
following paradigm for the definite article:

Masc Fem  Neut Plural

Nom der die das die
Gen  des der des der
Dat dem  der dem  der
Acc den die das die

This paradigm is rife with homonymy. The six forms of the definite article (der,
die, das, dem, des, den) must cover the sixteen cells in the paradigm. This is done
by having a single form cover several meanings. For example, the article der can
mean either masculine singular nominative, feminine singular genitive, feminine
singular dative, or plural genitive.

In order to select the correct form of the definite article, the language learner
has to know three things about the noun—its case, its number, and its gender.
Number is the easiest category, since it bears a straightforward relation to real-
world properties. Case is somewhat mare abstract, but it can generally be figured
out through a combination of cues from the verb, related prepositions, and
some word-order patterns. However, there is little in the external situation that
can help the child figure out the gender of a noun (Maratsos and Chalkley
1980). 1t is possible that the noun’s gender could be simply memorized or even
inferred on the basis of its use within the paradigm. However, recent work by
Kopcke and Zubin (Kopcke 1982, 1988; Kopcke and Zubin 1983, 1984, 1997;
Zubin and Kopcke 1981, 1986) has shown that Mark Twain’s view of gender as
arbitrary and unpredictable is incomplete and partially incorrect.

In fact, Kopcke and Zubin have shown that there are dozens of phonological
cues that can be used to predict the gender of a German noun. For example,
almost all nouns ending in -e are feminine, as in die Sonne, die Ente, and die
Tante. Almost all nouns beginning with dr-, tr-, and kn- are masculine, as in der
Knecht, der Trieb, and der Drang. There are dozens of other cues like these. In
addition to these purely phonological cues, there are derivational endings such
as -chen, -lein, -ett, -tum, -¢i, and so on, each of which reliably specifies a partic-
ular gender.
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MacWhinney et al. (1989) constructed a series of models of the acquisition of
this complex system of German case-number—gender marking. The first model
dedicated a series of nodes to the cues enumerated by Kopcke and Zubin, along
with a series of nodes for case and number cues. The second model made no
explicit coding of the Kopcke~Zubin cues, instead simply encoding the phono-
logical form of the base in the manner of the MacWhinney-Leinbach model for
English. Much to our surprise, the network with no hand-coding of features
outperformed the hand-crafted network in terms of both learning and general-
ization. These results provide nice support for the view of connectionist net-
works as providing emergent self-organizing characterizations of linguistic sys-
tems. Similar results for hand-wired vs. emergent solutions are reported by
Daelemans, Gillis, and Durieux (1993) for the learning of Dutch stress by a
connectionist network. The successful German simulation without the hand-
crafted input units is displayed in Figure 2.2.

The input to the network was a pattern across the 143 phonological units to
represent the noun stem and the eleven phonological units to represent suffixes
attached to the noun. In addition, there were five semantic units representing
inherent gender and seventeen cues that provided a distributed pattern of sur-
face structure information helpful in determining the case for the noun. How-
ever, the actual identity of the case to be used was not given. Hidden units were
attached separately to the two major types of inputs and then connected to a
further set of ‘collector’ units. This combination of ‘feeder’ and ‘collector’ hid-
den units is frequently used for input sets that differ markedly in type.

The network was trained with 2,000 German nouns from all cells in the para-

OUTPUT
UNITS de‘r.di.e.de}s Eies dem den
20 gender
number units
INPUT 143 phonological 17 case cues
UNITS 5 semantic 11 phonological

FiguREe 2.2. Neural network model of German declension
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digm. It learned the training set completely. When tested with 200 new nouns,
the system was able to guess the gender of the new words with 70 per cent accu-
racy. This compares with a level of 80 per cent accuracy {Képcke, personal com-
munication) that could be expected from a native German speaker.

The model also succeeded in capturing a variety of important developmental
phenomena. Like the children studied by MacWhinney (1978a) and Mills (1986),
the model showed early acquisition of the nominative and delayed acquisition
of the genitive. These acquisitional order effects are undoubtedly due to the fact
that the frequencies of the four cases in the training corpus were based on their
actual distribution in German corpora. Also, like German children, the model
made good use of reliable cues to gender such as final - or some of the deriv-
ational markers. Like children, the model was able to use the paradigm to infer
word class. For example, given the accusative form den Bauer, the model could
produce the genitive singular form des Bauers. Native speakers can do this on
the basis of only one exposure to the word, and the model displays similar
behaviour. Like children, the model frequently omitted the article. This occurred
when the output units did not reach threshold. Finally, the model demonstrated
the same tendency toward overgeneralization of the feminine gender often found
in children. This is apparently due to the fact that the similarity of the feminine
to the plural lends it enough frequency and paradigmatic support to tend to
overcome the effects of the other two genders.

When evaluating the success of these connectionist models of language acqui-
sition, it is important to consider the extent to which symbolic models are able
to address similar problems. For the learning of English verb morphology, Ling
(1994) and Ling and Marinov (1993) present a model that performs about as well
as the MacWhinney-Leinbach model for English. Although Ling’s model is based
on a conventional symbol-passing architecture, it uses an input-driven induction
algorithm, thereby avoiding problems with hand-wiring. However, the detailed
feature combinations constructed by Ling’s pattern associator provide no clear
representation of rules and would probably not be accepted as a full symbolic
model by many linguists and psycholinguists. Nonetheless, the COmparisons con-
ducted by Ling show that the competitive testing of symbolic and connectionist
models can be quite instructive.

2.3. Lexical Items: an Achilles Heel?

Despite its basic successes, there are several properties of the MacWhinney et al.
models that should give us serious cause for worry. Fortunately, as so often
happens, weaknesses and failures may actually be more instructive than suc-
cesses, as long as we are willing to learn from our failures. In regard to
inflectional learning, the weaknesses we can detect appear in a similar garb for
both English and German.
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2.3.1. Problem #1—Homophony

Because these models perform a conversion from one phonological form to
another phonological form without using discrete representations for lexical
items, they run into serious problems with homophonous forms. Consider the
three ways in which we can form the past tense of ‘ring’ in English. We can say
‘the maid wrung out the clothes’, ‘the soldiers ringed the city’, or ‘the choirboy
rang the bell’. These three different past tense forms all have the same sound
/rIN/ in the present, but each takes a different form in the past.

A similar problem arises in German. The stem Bund can be either der Bund
or das Bund, depending on whether it is an ‘alliance’ or a ‘bundle or sheaf of
wheat’. And the stem Band can be either der Band or das Band depending on
whether it means a ‘volume of a book’ or a ‘rubber band’. The problem here is
that, in order to control this variation, one needs to distinguish the meanings
of the two homophonous lexical items involved. If the network has no concept
of ‘lexical item’ this is difficult to do. These problems also affect the formation
of the plural. For example, the singular form das Wort has two plural forms, die
Wirter (several words) and die Worte (connected words or speech).

2.3.2. Problem #2—Compounds

A parallel problem crops up in the formation of the past tense of compound
words. The English training set included several compounds based on irregular
verbs such as ‘undergo’, ‘rethink’, and ‘undo’. The fact that the past tense of
‘undergo’ is ‘underwent’ depends on the fact that ‘undergo’ is a variant of the
stem ‘go’. If the compound itself is high enough in frequency, the network can
learn to treat it as an irregular. However, the network had a hard time learning
the past tense of low frequency irregular compounds. At the end of training, the
model was still not producing ‘underwent’ correctly, even though it had learned
‘went’ early in training. It is clear that the model was not able to use its learning
about ‘go-went’ to facilitate learning of the far less frequent form ‘undergo—
underwent’.

A similar problem emerged in the learning of the gender of compounds in
German. The model quickly learned that Mutfer ‘mother’ was feminine, because
the noun was so frequent. However, there is a competing tendency to treat
words with final -er as masculine. And this tendency led the model to treat the
less frequent form Grossmutter ‘grandmother’ as masculine, although it is clearly
a variant of Mutter and should be feminine.

Of course, this problem would go away if the model knew how to treat a
compound as two individual words. But most of the models we have discussed
have no concept of a ‘word’ and therefore no way of understanding what it
might mean for ‘undergo’ to be potentially two separate words.
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2.3.3. Problem #3—Derivational Status

The model was also not capable of utilizing information regarding the deriva-
tional status of lexical items. As Kim et al. (1990) have noted, the past tense
forms of denominal verbs are uniformly regular. For example, the word ‘ring’
can be used as a verb in a sentence such as ‘the groom ringed her finger’ and
we would never say ‘the groom rung her finger’. However, as we noted earlier,
the network of the MacWhinney-Leinbach simulation cannot use the
derivational status of the verb ‘ring’ to make this distinction.

German provides even clearer examples of the importance of derivational
status. All German nouns that derive from verbs are masculine. For example, the
noun der Schlag ‘blow, cream’ derives from the verb schlagen ‘to hit'. However,
there is no way of indicating this in the model, since it has no concept of words
and no idea about how one word could derive from another. Of course, we
could simply hand-wire a feature called [+derived], but this would be in clear
violation of the principles we discussed earlier.

Second, because affixes are lexical items and because the model has no con-
cept of lexical items, it cannot distinguish between true phonological cues such
as final -e or initial kn- and derivational markers such as -chen or -ett. This leads
to some very clear confusions. For example, masculines such as der Nacken
‘neck’ and der Hafen ‘harbour’ end in phonological /en/, whereas neuters such
as das Wissen ‘knowledge’ and das Lernen ‘learning’ end in the derivational suffix
-en. Confusion of these two suffixes leads to inability to predict gender correctly
for new nouns ending in -en.

2.3.4. Problem #4—Early Irregulars

A well-known child language phenomenon is the U-shaped learning curve for
irregular verbs in English. For a verb such as ‘go’, children may begin with
‘went’, then show some occasional usage of “*goed’, and finally settle in on
correct usage with ‘went’. During the period of oscillation between “goed’ and
‘went’, it is usually ‘went’ that predominates. However, not all irregular verbs
show this pattern and not all overregularizations enter at the same time. The
MacWhinney-Leinbach model showed the oscillation between “goed’ and
‘went’ terminating in correct usage, but it did not show early use of ‘went’. The
reason for the failure of the model to produce early ‘went’ is that the network
is configured to construct the past tense as 2 variation on the phonological
form of the present tense. A more accurate model would allow direct learning
of ‘went’ as a rote form. But the capacity to learn rote associations between
sound and meaning involves the capacity to learn lexical items, and this means
that we will need a connectionist architecture specifically designed for this type
of learning.
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2.3.5. The Core Problem

These four weaknesses we have discussed can be linked to a single core problem:
the absence of any way of representing lexical items. Lexical items are meant to
include anything that might somehow be entered into a systematic dictionary as
a form—function relation. This would include all manner of content words and
functions words, as well as productive inflectional affixes. Because these neural
network models have no lexical items, they are forced to rely on sound features
as the only way to determine inflectional morphology. It would be a mistake to
imagine that the sound form of words has no impact on inflection and deriva-
tion. In fact, it seems that what really happens during both production and
comprehension is that both the sound and meaning of stems and affixes are
available in parallel, although the time course of their activation may vary
(Kawamato 1993).

One way of addressing this problem is to mix both sound features and
meaning features without providing any explicit representation of lexical items.
Attempts to achieve lexical access without lexical representations have been
partially effective in models of reading (Kawamato 1993; Plaut et al. 1996) and
spelling (Seidenberg and McClelland 1989). It makes sense to use non-lexical
representations for this task, because orthographic-phonological correspondences
typically make little reference to lexical items. However, these models run into
more serious problems (Cottrell and Plunkett 1993 Hoeffner 1992), when dealing
with language learning and word production. Models of the Hoeffner type dis-
play this problem most clearly. They learn to associate sound to meaning and
store these associations in a distributed pattern in the hidden units. This ap-
proach works well enough until the model is given more than about 700 forms.
At this point, the large pool of hidden units is so fully invested in distinguishing
phonological and semantic subtypes and their associations that there is simply
no room for new words. Adding more hidden units does not solve this problem,
since all the interconnections must be computed and eventually the learning
algorithm will bog down. It would appear that what we are seeing here is the
soft underbelly of connectionism-—its inability to represent Islands of Stability
in the middle of a Sea of Chaos. Perhaps the problem of learning to represent
lexical items is the Achilles heel of connectionism.

2.4. A Solution to the Lexical Learning Problem

Given the seriousness of these problems and the extent to which they have lim-
ited the full effectiveness of connectionist models for English and German, we
decided to explore alternatives to fully distributed representations. The core
assumption in our new approach is that the lexical item serves a central control-
ling and stabilizing role in language learning and processing. We can refer to this
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revised approach as lexicalist connectionism. Predecessors to lexicalist connec-
tionist models can be found in localist connectionist models of the type devel-
oped by Stemberger (1985) and Dell (1986), where a central role is given to the
lexical item. However, because of their localist node-based architecture, these
models were forced to rely on hand-wiring.

In order to model lexical learning without hand-wiring, we turned to the self-
organizing feature map (SOFM) framework of Kohonen (1982) and Miikkulainen
(1990, 1991). In this framework, word learning is viewed as the association of a
large number of phonological features to a large number of semantic features.
These many features constitute a high-dimensional space. However, the associa-
tion of these many dimensions can be compressed onto a 2-D feature map in
which nearby vectors in the input space are mapped onto nearby units in the
2-D map. The two dimensions of the visible representation do not have any
direct relation to features in the input dataset; rather they preserve the topologi-
cal relations inherent in the high-dimensional space.

Schematically, one can think of the map as a 2-D compression that maps a
set of multidimensional inputs onto a map in the way suggested by Figure 3. In
this map, the inputs being mapped are auditory forms. Learning involves the
strengthening of weights between particular inputs and units on the map. This
can be done in strict accord with established biological principles of lateral inhi-
bition and the redistribution of syntactic resources (Kohonen 1982) using a
computationally efficient algorithm that is faithful to these biological principles
(Miikkulainen 1990).

Word learning involves development of one map for auditory forms and an-
other for semantic forms. These two maps are then mutually associated using
Hebbian learning. With this algorithm, we found that a network with 10,000
nodes can learn up to 6,000 lexical associations with an error rate of less than

auditory lexicon

I

auditory features

FiGure 2.3. Self-organizing feature map for
auditory patterns
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1 per cent. In this implementation, we used four floating-point numbers to rep-
resent sound and four additional floating-point numbers to represent meaning.
The shape of these eight numbers for each item was generated randomly. At the
beginning of learning, the first input vector of eight numbers led by chance to
somewhat stronger activation on one of the 10,000 cells. This one slightly more
active cell then inhibits the activation of its competitors. This is done using a
‘Mexican hat’ function which allows nearby neighbours to maintain some activa-
tion, while strongly inhibiting cells a bit farther away. As a result of this pattern
of activation and inhibition, inputs that are close in feature space end up activat-
ing cells in similar regions of the map. Once a cell has won this particular com-
petition, its activation is negatively damped to prevent it from winning for all
of the inputs. Then, on the next trial, another cell has a chance to win in the
competition for the next sound-meaning input pattern. This process repeats
until all 6,000 sound-meaning patterns have developed some ‘specialist’ cell in
the feature map. During this process, the dynamics of self-organization ensure
that items that shared features end up in similar regions of the feature map.

We were able to follow the development of the feature map by tracking the
average radius of the individual items. After learning the first 700 words, the
average radius of each word was 70 cells; after 3,000 words, the radius was &
after 5,000 words the radius was 3; and after 6,000 words the radius was only
1.5 cells. Clearly, there is not much room for new lexical items in a feature map
with 10,000 cells that has already learned 6,000 items. However, there is good
reason to think that the enormous number of cells in the human brain ensures
that the size of the initial feature map is not an important limiting constraint
on the learning of the lexicon by real children.

2.5. Using Lexical Representations

This implementation allows us to put aside our earlier worries regarding lexical
learning as an Achilles heel for connectionist models of language learning. We
now have structures that function like lexical items and which developed in a
fully self-organizing way without external intervention or corrective training. We
cannot manipulate these items with standard symbol-passing techniques, but
additional input can develop their connections to other processes. In this sec-
tion, I will discuss some of the ways in which we can use these representations
to make further progress in connectionist models of language acquisition.

2.5.1. Learning Inflectional Morphology

The first crucial application of this new modelling effort has been to the acquisi-
tion of inflectional morphology. Our initial goal was to see if the model could
Jearn to inflect verbs for the English past tense. The network is first given the
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set of input forms used in the MacWhinney-Leinbach simulations for English.
Each phonological input is paired with a randomly generated, but consistent,
semantic representation. Included in the semantic representation are features
that consistently represent the meanings signalled by English verb inflections:
present, past, perfect, progressive, and third singular. During this lexical training,
the network learns inflected items such as ‘went” and ‘gone’, as well as regularly
inflected items such as ‘goes’, ‘going’, ‘jumped’, and ‘runs’. The network also
acquires a large number of bare-stem verbs such as ‘go’, ‘run’, and ‘jump’.

Before this training is completed, we introduce a few generalization trials.
These trials take verbs that have been learned as bare-stems, but not yet as
inflected forms. For example, the network already knows ‘jump’, but has not
yet learned ‘jumped’. At this point, the network engages in the process of ‘mask-
ing’ (Cohen and Grossberg 1987; Grossberg 1987; Carpenter, Grossberg, and
Reynolds 1993; Burgess and Hitch 1992; Burgess 1995) which leads to the suppres-
sion of jump’ and the isolation of ‘ed’ as the not-yet-recognized form. The
suffix is then learned as a new lexical item that associates -ed with the meaning
of the past tense. In the terms of MacWhinney (19874), learning involves associ-
ating the ‘unexpressed’ with the ‘uncomprehended’. Learning of the other inflec-
tional suffixes proceeds in a similar way. When the system is asked to produce
the past tense of a new verb, masking is used in reverse. For example, the past
tense of jump’ is produced by first activating jump’ and then masking the
semantics and phonology of ‘jump’, reactivating the network with ‘past’ and
then retrieving -ed.

This approach to the problem of learning the English past tense solves a num-
ber of problems faced by earlier nonlexical models. First, the model succeeds in
capturing both rote lexicalization and combinatorial lexicalization within a single
connectionist model. Rote forms are picked up directly on the feature map.
Combinatorial forms are created by the isolation of the suffix through masking
and the use of masking in production. Second, the model no longer faces the
earlier problems that stemmed from a lack of lexical items. Homophony is not
a problem, because the various homophonic meanings of ‘ring’ are now
representationally distinct. The model can locate ‘go’ inside ‘undergo’” and Mut-
ter inside Grossmutter because it now has lexical items and can use masking. In
German, derivational suffixes like -chen can be used as cues to gender because
these suffixes now have their own representational status. Finally, the model no
longer has any problem with the early acquisition of irregulars such as ‘went’.
Since the learning is grounded now on lexical items, these high frequency forms
are some of the first forms learned.

This model relies on three crucial processing mechanisms. The first mecha-
nism is the self-organizing competitive learning incorporated in the feature map.
The second mechanism uses Hebbian learning to develop a central associative
map for lexical comprehension and production. The third mechanism is the
masking process which works to extract inflections.
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2.5.2. The Logical Problem

The ability to produce ‘went’ by rote and “*goed’ by combination within the
same lexical feature map also allows us to begin work on a general solution to
the so-called ‘logical problem of language acquisition’ (Wexler and Culicover
1980; Baker and McCarthy 1981; Gleitman, Newport, and Gleitman 1984; Pinker
1984, 1989; Morgan and Travis 1989; Gleitman 1990). In the case of the competi-
tion between ‘went’ and “*goed’, we expect ‘went’ to become solidified over time
because of its repeated occurrence in the input. The form “*goed’, on the other
hand, is supported only by the presence of the combinational -ed form. Figure
2.4 illustrates this competition. This particular situation is an example of what
Baker calls a ‘benign exception to the logical problem’. Later, we will examine
some non-benign cases.

g0+ PAST

TN

went +—— competition — go + ed

episodic combinatorial
support formation

FicUre 2.4. The competition between regular and
irregular inflections

2.5.3. Masking and Buffering

The masking mechanism underlies not only inflectional extraction, but also syn-
tactic processing more generally. In order to process sentences, we need to have
some process that deactivates each lexical item immediately after it is activated.
The trace of this masked item must then be stored provisionally in some sepa-
rate form apart from the main lexicon. The simplest way to do this is to activate
a second copy of the original item (Burgess and Hitch 1992). This could be done
by creating a complete secondary copy of the primary lexicon. However, even
this complete duplication of the lexicon would only guarantee memory for two
words at a time. A more flexible system would convert the initial lexical repre-
sentations to some other pattern. There have been several suggestions regarding
the nature of this short-term verbal memory.

L As soon as words are linked together into conceptual clusters, they can be
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used to activate a unique underlying meaning that no longer requires verbal
storage.

». Before this linkage occurs, words may be obtained in a phonological loop
(Baddeley 1986). This immediate rehearsal requires that words be present in
a primarily articulatory form {Gupta and MacWhinney 1994).

3. It is also possible that some additional mechanism operates on lexical items
to encode their serial occurrence without reference to either meaning or
sound. This could be done in terms of some additional episodic, possibly
hippocampal, mechanism that stores activation levels of words prior to mask-
ing. A system of this type is close to the Competitive Queuing mechanism
proposed first by Grossberg and then again by Houghton.

Further experimental work will be needed to understand more closely which of
these three mechanisms is involved at which point in the storage of short-term
verbal memories. What is important for our current simulations is only the fact
that there is evidence that neural (Gupta and MacWhinney 1997) mechanisms
are available to support masking in the lexicon.

2.5.4. Argument Frame Extraction

Earlier versions of the Competition Model (MacWhinney 1988) presented a
system for the control of syntax through lexical argument (or ‘valency’ or ‘de-
pendency’) relations. From a connectionist viewpoint, the masking process is
what triggers the acquisition of argument relations. To illustrate this process,
consider an example in which the child already knows the words ‘Mommy’ and
‘Daddy’, but does not know the word ‘like’. Given this state of lexical know-

ledge, the sentence ‘Daddy likes Mommy’ would be represented in this way:

dadi lalks mami
Daddy |unknown | Mommy

For the first and last phonological stretches, there are lexical items that match.
These strings and the semantics they represent are masked. The unknown stretch
is not masked and therefore stimulates lexical learning of the new word ‘likes’.

The core of the learning for ‘likes’ is the association of the sound /lalk/ to the
meaning ‘like’. In addition to this association, the central association feature
map now constructs links not only to sound and meaning, but also to argument
relations. The initial argument frame for the word ‘likes’ is [[argl, preposed,
‘Daddy’]arg2, postposed, ‘Mommy’]}. Further exposures to sentences such as
‘Daddy likes pancakes’ or ‘Billy likes turtles’ will saon generalize the dependency
frame for ‘likes' to |[arg, preposed, human]{argz, postposed, object]}.

The implementation of the acquisition of argument frames follows the logic
developed by Gupta and MacWhinney (1992) for the acquisition of German
declensional marking. That model used a SOFM for the extraction of co-
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occurrence patterns between articles and nouns. Using these patterns, the full
shape of the German declensional pattern emerged inside the SOFM. Nodes in
the map took on the role of associating particular constellations of case and
number marking on the article with one of the three grammatical genders of
German. This system was then linked to a backpropagation system that re-
sponded to additional phonological cues to gender. The general shape of this
type of model is given in Figure 2.5 which includes the basic components of
Figure 2.2 along with additional maps for argument structures and articulatory
control.

The argument frame feature map is intended to capture a few basic grammati-
cal categories which will then be related to particular lexical items. However,
these argument frames will also activate patterns in the meaning and auditory
form feature maps.

The feature map is designed to include two basic effects. One is the activation
of the correct argument frame for a specific lexical item. The other is the activa-
tion of argument frames for semantically related groups of words or lexical
‘gangs’. Words that have similar meanings will tend to activate similar argument
structures.

Lexical gang effects help us address some remaining aspects of the ‘logical
problem of language acquisition’. Bowerman (1988) cites overgeneralization er-
rors such as I poured the tub with water’, I unsqueezed the ball’, and
I recommended him a soup’ as potential evidence for the logical problem.
However, recovery from these errors can be viewed as similar to recovery from
errors such as “*goed’. Figure 2.6 illustrates the situation.

In this case, the construction ‘recommend Y X’ represents an ungrammatical
phrase such as ““recommend the boy the book’ and the construction ‘recom-
mend X to Y’ represents a grammatical phrase such as ‘recommend the book to
the boy’. An overgeneralization such as “*recommend the boy the book’ arises
from generalization out of phrases such as ‘give the boy the book’ or ‘send your
client a check’. Because the verb ‘recommend’ shares many semantic features
with transfer verbs such as ‘give’ and ‘offer’, it becomes a part of a lexical gang
and is subject to overgeneralization or what connectionists call lexical gang

articulatory auditory lexical lexical
form form association meaning

phonological argument semantic

modification frames modification

FIGURE 2.5. A connectionist account of the shape of linguistic representations
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‘recommend’

e

‘recommend X to Y’ competition ——— ‘recommend Y X’

episodic lexical lexical gang
support effects

FiGuURE 2.6. Competition between lexical argument frames and lexical gang effects

effects. In order to correct this overgeneralization, the child has simply to
strengthen the alternative frame for the verb ‘recommend’. To do this, it is
necessary to focus on the actual use of the verb in the input and to record the
specific episodes in which it is used in the ‘recommend X to Y’ form.

The Competition Model ( MacWhinney 1988) treated the argument structures
for inflectional morphemes as similar to the structures for verbs and preposi-
tions. For the English past tense, the masking and extraction of the phonological
form /id/ from the verb jumped’ produces a frame specifically linked to the
sound and meaning of jump’. Over time, the meaning of the verb to which the
past tense suffix is attached becomes generalized to any verb, and the sound of
the suffix becomes generalized so that the /id/ form of the morpheme requires
final dental consonants, whereas the /d/ and /t/ forms require final non-dentals
and vowels.

2.5.5. Modification Systems

In addition to the basic maps for lexical associations and argument frames, Fig-
ure 2.3 can be supplemented with systems for phonological and semantic modifi-
cation. Phonological modification operates to enforce general phonological pat-
terns when words are linked together. Semantic modification works to adapt
meanings when words are linked together. Often this linkage is predictable and
obvious. However, sometimes words are placed together even at the expense of
standard argument frames. Because connectionist systems are constraint satisfac-
tion systems, rather than rule systems, they can deal with partial violations in
the combinations of words. Consider a combination like ‘another sand’. Typi-
cally, the word ‘another’ requires a count noun and ‘sand’ is a mass noun. How-
ever, when the listener is confronted with this particular combination, it is still
possible to retrieve an interpretation by treating ‘'sand’ as a count noun. This can
be done by thinking of bags of sand, types of sand, alternative meanings of the
word ‘sand’, or even the act of applying sandpaper to something. MacWhinney
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(1989) talks about these semantic extension effects in terms of a process of
‘pushy polysemy’.

2.6. Discussion and Conclusions

This modelling work with connectionist nets has advanced to the point where
it can compete on an equal footing with the more powerful rule-based symbolic
models. These networks minimize hand-wiring and maximize self-organization.
Because of this, they are attractive to developmental psychologists. They also
avoid reliance on hardware address and symbol passing. And it is this that
makes them attractive to cognitive neuroscientists. But they are still incomplete
in many ways. In our modelling of language learning, we have made good prog-
ress in the areas of lexical learning, inflectional morphology, and role assign-
ment. But there is still much work to be done. We need to link up the high-
level modelling of role assignment to detailed aspects of lexical processing and
local role assignment and attachment. We need to model the learning of more
different types of inflectional structures. And we need to deal in greater detail
with lexical effects on syntax.

Viewing these efforts from the viewpoint of cognitive neuroscience, we can say
that our efforts have concentrated on ways in which small areas of cortex can
compute specific linguistic relations. But we know that language is processed in
separate cortical and subcortical areas that must work in a concerted fashion
across large distances, relying on connecting axonal pathways and cortical-
subcortical connections. Understanding how divergent areas constitute functional
neural circuits in which information is transferred without symbol passing is a
major task facing connectionist modelling. There may still be an Achilles heel in
the connectionist approach that will doom this whole process to failure. But, for
now, we can look at the progress we have made as grounds for cautious optimism.
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3.1. Introduction

Connectionist models of natural language processing have attracted considerable
interest because of their simple learning mechanisms and their representational
capabilities. Not surprisingly, much of the focus of recent research has been
concerned with modelling aspects of language acquisition (e.g. Rumelhart and
McClelland 1986; Elman 1990, 1991; Plunkett and Marchman 1991), and the find-
ings have challenged old conceptions about the need for the learning of rules
and the types of representations that are required for language development. It
is early days yet, just over a decade (see Sharkey and Reilly 1992), and there
appears to be reason for optimism about the prognosis for connectionist ac-
counts of learning and representation. In this chapter, we assess whether this
optimism is appropriate for some of the broader issues of language learning.

One of the problems faced by the modellers of the early and mid 1980s was
how to represent the temporal characteristics of language with artificial neural
nets. The artificial neural nets used had only feedforward connections and thus
could not preserve a memory of prior inputs. Although some methods were used
to get around problems of sequentiality such as assemblies or frames (Hinton
1981; McClelland and Rumelhart 1981}, moving input windows (Sejnowski and
Rosenberg 1986), and Wickelfeatures (Rumelhart and McClelland 1986), these
amounted to using the input space as fixed width memory buffer.

A seemingly natural step forward has been to augment feedforward network
architecture with recurrent or feedback links that preserve a fading memory of
the past. One of the most popularly used recurrent nets for modelling language,
developed by Elman (1988), is the Simple Recurrent Net (SRN) as illustrated in
Figure 3.1. The task of the SRN is to learn to predict the legal successors of the
current input (e.g. as in grammar recognition). This approach has yielded many
successes both in simple grammar learning (for example Servan-Schreiber,
Cleeremans, and McClelland 1991), and in creating appropriately structured
lexical representations {for example Elman 1990). Moreover, the SRN has been



