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Language Acquisition

Brian MacWhinney

Language is a uniquely human achievement. All of the major social achievements of

human culture -- architecture, literature, law, science, art, and even warfare -- rely on the

use of language. Although there have been attempts to teach language to primates, the

ability to learn language is a tightly copyrighted mark of the human species. This view of

language led Chomsky (1965) to voice this assessment:

It is, for the present, impossible to formulate an assumption about initial,

innate structure rich enough to account for the fact that grammatical
knowledge is attained on the basis of the evidence available to the learner.

Consequently, the empiricist effort to show how the assumptions about a

language acquisition device can be reduced to a conceptual minimum is
quite misplaced. The real problem is that of developing a hypothesis about

initial structure that is sufficiently rich to account for acquisition of

language, yet not so rich as to be inconsistent with the known diversity of
language.

To address this challenge, neural network researchers have explored a wide variety of

network architectures and linguistic problems. This work has shown how children can

learn language without relying on specifically linguistic, innate initial structure.

However, several problems must be addressed before we can say that neural networks

have answered Chomsky’s challenge.
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An Example

Let us consider, as an example of this type of research, the neural network developed

by MacWhinney, Leinbach, Taraban, and McDonald (1989). This model was designed to

explain how German children learn to select one of the six different forms of the German

definite article. In English, we have a single word “the” that serves as the definite article.

In German, the article can take the form der, die, das, des, dem, and den, as indicated in

Table 1. The choice of a particular form of the article depends on three additional features

of the noun: its gender (masculine, feminine, or neuter), its number (singular or plural),

and its role within the sentence (subject, possessor, direct object, prepositional object, or

indirect object). There are 16 cells in the paradigm for the four cases and four genders

(masculine, feminine, neuter, plural), but there are only six forms of the article. This

means that a given form of the article, such as der can be used for either masculine-

nominative-singular or feminine-genitive-singular, and so on.

Masc. Fem. Neut. Plural

Nom. der die das die

Gen. des der des der

Dat. dem der dem der

Acc. den die das die

Table 1. The German Definite Article Paradigm
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To make matters worse, assignment of nouns to gender categories in German is quite

nonintuitive. For example, the word for “fork” is feminine, the word for “spoon” is

masculine, and the word for “knife” is neuter. Acquiring this system of arbitrary gender

assignments is particularly difficult for adult second language learners. Mark Twain

expressed his consternation at this aspect of German in a treatise entitled “The aweful

German language” in which he accuses the language of unfairness and capriciousness in

its treatment of young girls as neuter, the sun as feminine, and the moon as masculine.

Along a similar vein, Maratsos and Chalkley (1980) argued that, because neither

semantic nor phonological cues can predict which article accompanies a given noun in

German, children could not learn the language by relying on simple surface cues.

These relations are so complex that a careful linguistic description of the system

occupies well over 200 pages. However, MacWhinney et al. show that it is possible to

construct a connectionist network that learns this system from the available cues. The

model uses a simple feed-forward architecture. The input is structured into two pools of

units. The first pool has 143 phonological units and 5 token meaning units. The second

pool has 17 case cues from syntactic structure and 11 phonological cues from endings on

the noun. These two input pools feeds into two separate pools of collector units that then

feed together into a second level of hidden units. The output is a set of six nodes for the

six possible forms of the German article. It is important to remember that each of these 6

articles must serve several functions to fill up the 16 cells of the declensional paradigm.
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Figure 1:  A network model of the acquisition of German declensional marking

The network was trained using the back-propagation algorithm. After 40 epochs of

training on a set of 102 real German nouns, the network was able to choose the correct

article 98% of the time. This meant that it not only succeeded in getting the gender of the

noun right, but also figured out how to use the case cues to correctly select one of the 16

cells of the paradigm. To test the network’s generalization abilities, we presented it with

old nouns in new case roles. In these tests, the network chose the correct article on 92

percent of trials. This type of cross-paradigm generalization provides clear evidence that

the network went far beyond rote memorization during the training phase. In fact, the

network quickly succeeded in learning the whole of the basic formal paradigm for the

marking of German case, number, and gender on the noun.
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In addition, the simulation was able to generalize its internalized knowledge to solve

the problem that had so perplexed Mark Twain -- guessing at the gender of entirely novel

nouns. We presented the network with 48 new high frequency German nouns in a variety

of sentence contexts. On this completely novel set, the simulation chose the correct

article from the six possibilities on 61 percent of trials, versus 17 percent expected by

chance. Thus, the system’s learning mechanism, together with its representation of the

noun's phonological and semantic properties and the context, produced a good guess

about what article would accompany a given noun, even when the noun was entirely

unfamiliar. In a subsidiary simulation, we showed that, when the model only has to guess

the gender of the noun, and not its position in the paradigm, it achieves over 70%

accuracy on new nouns. This is a level that comes close to that achieved by native

speakers.

The network’s learning paralleled children’s learning in a number of ways. Like real

German-speaking children, the network tended to overuse the articles that accompany

feminine nouns. The reason for this is that the feminine forms of the article have a high

frequency, because they are used both for feminines and for plurals of all genders. The

simulation also showed the same type of overgeneralization patterns that are often

interpreted as reflecting rule use when they occur in children’s language. For example,

although the noun “Kleid” (clothing) is neuter, the simulation used the initial “kl” sound

of the noun to conclude that it was masculine. Because of this, it invariably chose the

article that would accompany the noun if it were masculine. Interestingly, the same

article-noun combinations that are the most difficult for children were also the most

difficult for the network.



6

Demonstrations of this type illustrate how children can acquire linguistic knowledge

without relying on stipulated, hard-wired constraints of the type envisioned by Chomsky.

Similar demonstrations have been produced in a wide variety of areas including: the

English past tense, Dutch word stress, universal metrical features, German participle

acquisition, German plurals, Italian articles, Spanish articles, English derivation for

reversives, lexical learning from perceptual input, deictic reference, personal pronouns,

polysemic patterns in word meaning, vowel harmony, historical change, early auditory

processing, the phonological loop, early phonological output processes, ambiguity

resolution, relative clause processing, word class learning, speech errors, bilingualism,

and the vocabulary spurt.

Challenges

Researchers have contested the logic underlying these demonstrations. Some of the

problems that have been raised relate only to minor implementational features of the

earliest models (MacWhinney & Leinbach, 1991), but others are more fundamental. The

five most fundamental challenges are:

1. Dual route. Neural networks provide a good account of associative processes, but

fail to account for the learning of regular rules.

2. Lexical learning. Neural networks have problems learning large numbers of

words.

3. Syntax. Neural networks have problems dealing with the compositional aspects of

complex syntax.
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4. Neuronal reality. Some neural network architectures make inappropriate

assumptions regarding neural processing.

5. Embodiment. Neural networks have not been able to model the ways in which the

mind is linked to the body.

Let us look at responses to each of these five challenges in greater detail.

Dual route

Pinker (1999) has been a key proponent of the application of a dual-route model to

language acquisition. He contends that irregular forms, such as fell, went, feet, or broken,

are processed through an associative memory grounded on neural networks, but that

regular forms, such as jumped, wanted, cats, and dropped, are produced by rule. Pinker

views his defense of the psychological reality of linguistic rules as a part of a general

defense of the linguistic theory of generative grammar.

The fact that irregulars are processed differently from regulars does not prove the

existence of symbolic rules. Neural networks have no problem representing both regular

and irregular patterns in a single network. For example, the network developed by

Kawamoto (1994) encodes regular forms as nodes in competition with less regular nodes.

In that homogeneous recurrent network architecture, regular and irregular forms display

quite different temporal activation patterns, in accord with empirical observations.

Kawamoto’s model also accords with the fact that even the most regular patterns display

phonological conditioning and patterns of gradience (Bybee, 1995) of the type modeled

by neural networks.
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Lexical learning

Neural networks have problems learning large numbers of words. Typically, neural

network architectures have been used primarily as methods for extracting and classifying

patterns. Word learning is differs from classification in two ways. First, the association

between a word’s meaning and its sound is almost entirely arbitrary. There is nothing in

the specific sounds of table that depicts the shape or purpose of a table. This means that

the learning of words cannot rely on the methods for pattern detection that are so

important in neural network research. Second, the number of words that a speaker must

learn is extremely large. If we look just at word stems, adult English speakers control

between 10,000 and 50,000 words. Many of these words have multiple meanings and

many can be further combined into compounds and rote phrases. Thus, the effective

lexicon of an adult English speaker is from 20,000 to 80,000 words.

Self-organizing maps (SOMs) (Farkas & Li, 2001)  offer a promising framework for

dealing with the encoding of lexical items. Precision of encoding can be obtained by

increasing the dimensionality of the coding space and then recompressing the additional

dimensions. Conflicts between related words that are close on the lexical map can trigger

a process of focused learning that concentrates specifically on words that are being

confused.  Catastrophic interference can be avoided by adding new nodes without

forgetting older patterns (Hamker, 2001).

Because SOMs provide a relatively local encoding of words, they then allow us to

address four additional problems that stem from problems of representing words in neural

networks.
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1. U-shaped learning. Children often produce a form like went correctly for several

weeks or months and then shift to occasionally saying go-ed. Later, they move

back to saying went consistently. This pattern, known as u-shaped learning

requires an ability to learn some forms first by rote. Back propagation networks

are good at producing overgeneralizations like go-ed but weak at producing and

holding on to a rote form like went (Plunkett & Marchman, 1993). By default,

SOMs place an emphasis on early rote learning and are slower to generalize out

the regular patterns.

2. Homophony. Because most neural network models do not have discrete

representations for lexical items, they have problems distinguishing homophonous

forms. Consider what happens to the three homophones of the word ring in

English. We can say the maid wrung out the clothes, the soldiers ringed the city,

or the choirboy rang the bell. These three different words all have the same sound

/rIN/ in the present, but each takes a different form in the past. In SOMs, these

three words have clearly different representations in semantic space.

3. Compounds. Without discrete representations for lexical items, neural networks

have problems with compound words. The fact that the past tense of undergo is

underwent depends on the fact that undergo is a variant of the stem go. When the

compound itself is high enough in frequency, the network can learn to treat it as

an irregular. Networks have problems learning the past tense of low frequency

irregular compounds. However, if the network can detect the present of “go”

inside “undergo,” it can solve this problem.
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4. Derivational status. Neural networks have problems utilizing information

regarding the derivational status of lexical items. In English, the past tense forms

of denominal verbs always receive the regular past tense suffix. For example, the

word ring can be used as a verb in the groom ringed her finger, but we would

never say the groom rung her finger. Without an ability to know that a word

derives from a noun, neural networks cannot encode this pattern. German

provides even clearer examples of the importance of derivational status. All

German nouns that derive from verbs are masculine. For example, the noun der

Schlag (‘blow’; ‘cream’) derives from the verb schlagen (‘to hit’). However, there

is no motivated way of indicating this in the model. In general, the model includes

no independent way of representing morphological relationships between words.

Thus, no distinction is made between true phonological cues such as final /e/ or

initial /kn/ and derivational markers for the diminutive, such as -chen or -ett. This

leads to some very obvious confusions. For example, masculines such as der

Nacken (‘neck’) and der Hafen (‘harbor’) end in phonological /en/, whereas

neuters such as das Wissen (‘knowledge’) and das Lernen (‘learning’) end in the

derivational suffix -en. Confusion of these two suffixes leads to inability to

correctly predict gender for new nouns ending in /en/. Without having a way of

representing the fact that derivational morphemes have an independent lexical

status, neural networks cannot process these patterns.

These four difficulties reflect a single core problem. By working with neural networks

that flexibly encode lexical items, we can begin to address these additional features of

word structure.
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Syntax

Elman (1990) has provided demonstrations of the ability of neural networks to

process complex syntactic structures. His model uses recurrent connections to update the

network’s memory after it listens to each word. The network’s task is to predict the next

word. This framework views language comprehension as a highly constructive process in

which the major goal is trying to predict what will come next. Psycholinguists recognize

the importance of prediction, but they view the major task of language processing as the

construction of mental models. It is not clear how understanding prediction will help us

understand the construction of mental models, although the two processes are certainly

related.

An alternative to the predictive framework relies on the older neural network

mechanisms of spreading activation and competition. For example MacDonald,

Seidenberg, and Perlmutter (1994) have presented a model of ambiguity resolution in

sentence processing that is grounded on competition between lexical items. Models of

this type, do an excellent job of modeling the temporal properties of sentence processing.

Such models assume that the problem of lexical learning in neural networks has been

solved. They then proceed to use localist representations to control interactive activation

during sentence processing. Until we have indeed solved the problem of lexical learning,

this is a very effective way of advancing the research agenda.

Another approach that makes similar assumptions uses a linguistic framework known

as Construction Grammar. This framework emphasizes the role of individual lexical

items in early grammatical learning (Tomasello, 2000). Early on, children learn to use
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simple frames such as my + X  or his + X to indicate possession. As development

progresses, these frames are merged into general constructions, such as the possessive

construction. In effect, each construction emerges from a lexical gang. Sentence

processing then relies on the child’s ability to combine constructions online. When two

alternative constructions compete, errors appear. An example would be *say me that

story, instead of tell me that story. In this error, the child has treated say as a member of

the group of verbs that forms the dative construction. In the classic theory of generative

grammar, recovery from this error is supposed to trigger a learnability problem, since

such errors are seldom overtly corrected and, when they are, children tend to ignore the

feedback. Neural network implementations of Construction Grammar address this

problem by emphasizing the direct competition between say and tell during production.

The child can rely on positive data to strengthen the verb tell and its link to the dative

construction, thereby eliminating this error without corrective feedback. In this way,

models that implement competition provide solutions to the logical problem of language

acquisition.

These various approaches to syntactic learning must eventually find a way of dealing

with the compositional nature of syntax (Valiant, 1994). A noun phrase such as “my big

dog and his ball” can be further decomposed into two segments conjoined by the “and”.

Each of the segments is further composed of a head noun and its modifiers.  Our ability to

recursively combine words into larger phrases stands as a major challenge to

connectionist modeling. One likely solution would use predicate constructions to activate

arguments that are then combined in a short-term memory buffer during sentence

planning and interpretation.  To build a model of this type, we need to develop a clearer
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mechanistic link between constructions as lexical items and constructions as controllers

of the on-the-fly process of syntactic combination.

Neuronal realism

Some researchers have criticized neural network models in the area of language

acquisition for a failure to properly represent basic facts about the brain. To the degree

that the back propagation algorithm relies on reciprocal connections between units, this

criticism is well-founded. However, work in this area has begun to rely on models such

as self-organizing feature maps, adaptive resonance, and Hebbian learning that have

closer mappings to the features of neural organization. In fact, Elman (1999) has shown

how the imposition of biologically realistic assumptions, such as the brain’s preference

for short connections, can lead to more effective language learning. Thus, this particular

challenge to neural network theory may end up being more of a searchlight than a barrier.

Neural networks must also achieve a closer match to what we are now learning about

functional neural circuitry.  We know that auditory cortex, Broca’s area, temporal word

storage, and frontal attentional areas are all involved in various ways in language

processing. However, we have not yet figured out exactly how these separate brain

structures map onto separate aspects  of lexical and syntactic processing.

Embodiment

The final challenge to neural network modeling comes from researchers who have

begun to explore the ways in which the mind is grounded on the body. This relatively

new line of research emphasizes the importance of findings that mental imagery makes
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use of the reactivation of perceptual systems to recreate physically grounded images. A

convergence of work in neuroscience, psychology, and cognitive linguistics points to the

view of language use not as disembodied symbol processing, but as indirectly grounded

on basic mechanisms for perception and action which themselves operate on the human

body. Neural network models have just begun to deal with this new challenge. One

approach emphasizes the ways in which distal learning processes can train action patterns

such as speech production on the basis of their perceptual products (Plaut & Kello, 1999).

Another approach, adopted by the NTL (Neural Theory of Language) group (Bailey,

Feldman, Narayanan, & Lakoff, 1997) relies on the higher-order formalism of Petri nets

to represent the control structure of body motions such as pull or stumble. The

architecture then includes transparent methods of linking the higher-level representation

to a neural network implementation.

One trend that will facilitate this work, as well as all modeling of language

acquisition is the increasing availability of transcript and multimedia data from children

interacting with their caretakers.  The Child Language Data Exchange System

(CHILDES) at http://childes.psy.cmu.edu now provides thousands of hours of transcripts

of child language data, much of it linked to audio and some to video.  In the context of

the broader TalkBank Project at http://talkbank.org, this data is being recoded in XML

format and linked to a variety of computational tools for analyzing gestural,

phonological, morphological and syntactic structure. This growing database provides

increasingly rich targets for neural network modeling.
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Conclusion

Neural networks have addressed many aspects of Chomsky’s challenge. They have

been used to develop useful models of virtually all aspects of language learning and

processing. However, further challenges lie ahead. Of these, the most pressing is the need

to develop methods for simulating the learning of a realistically sized lexicon of several

thousand words. If this problem can be solved, it will have further positive consequences

for models of syntactic development that emphasize the importance of item-based

learning. It is likely that a good solution to this problem will need to rely on an improved

understanding of the ways in which the brain stores and processes lexical items. An even

greater challenge will be developing models that express the ways in which language

processing is grounded on embodied cognition. Together, these challenges guarantee

vitality in this area for years to come.
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