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I would like to begin by clarifying some technical points regarding

learnability and Gold’s theorem and will work my way around to advocating

the power of distributed connectionist networks. I may wind up repeating

much of what MacWhinney has already said, but I hope to do so in a

manner that clarifies the status of and relationship between his seven

solutions to the language acquisition problem.

MacWhinney seems to conflate finite languages, which are learnable under

Gold’s formulation, with regular languages, which can be recognized or

produced by finite state automata. To be clear, a finite language simply

consists of a finite set of sentences. Such a language is easy to learn in

Gold’s model because the learner can simply assume that all sentences it

has observed are in the language and all others are not (a primitive

conservatism). Eventually, the learner will have observed the full set and

will thus have learned the language.

Finite state machines, on the other hand, produce regular languages, which

are potentially infinite and which, as a class, are a superset of the finite

languages. For example, the infinite language of all sentences with an even

number of words is regular, as is the language consisting of every possible

sentence. However, the regular or ‘finite-state’ grammars are not, in fact,

learnable from positive evidence under Gold’s model of learning. Even given

a set of positive and negative examples, it is NP-hard, and thus presumably

computationally intractable, to infer the smallest finite automaton consistent

with those examples.1 No language class that includes all of the finite

languages and at least one infinite language is learnable in Gold’s sense.

Therefore, the learnability of natural language is not improved by expressing

[1] An NP-hard problem has no known solution that runs in time that is less than
exponential in the size of the input. This makes it computationally intractable for all
but the smallest problems.
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that language as a left-associative grammar (Hausser, 1999) or a finite-state

grammar with limited continuations (Reich, 1969).

Learnability has been shown under Gold’s model for some restricted

classes of grammars that, unlike the regular and context-free languages, do

not include all possible finite languages. For example, parenthesis languages

(McNaughton, 1967), k-reversible regular languages (Angluin, 1982), and

the class of k-valued languages (Kanazawa, 1998) are learnable under Gold’s

model. However, some of these language classes cannot adequately charac-

terize the natural languages. For example, the fact that natural language

contains verbs that share some, but not all, argument structures, and the

fact (if we choose to believe it) that noun phrases or other verb arguments

can be arbitrarily long, violates the assumptions of k-reversibility.

On the other hand, Shinohara (1994) has shown that the class of context-

sensitive languages defined by at most n productions is learnable. These are

sufficient for characterizing natural language if one is willing to place an

a priori bound on the complexity of a natural grammar, which seems entirely

reasonable. However, the inference methods invoked in this and similar

learnability proofs are, by and large, computationally infeasible, requiring

the learner to enumerate all possible languages. Likewise, inferring k-valued

languages is NP-hard, even with structured examples (Florêncio, 2000). The

language classes learnable under Gold’s model are either overly constrained

or are not, as far as we know, learnable in a computationally practical manner.

Gold’s learning model is difficult largely because of the very loose

constraints placed on the information source, which is required only to

produce every sentence eventually. But the source could withhold entire

structures from the language for an indefinite, albeit not infinite, time. As

a result, there is no useful guarantee that would justify the eventual decision

that if the learner hasn’t heard something yet, that thing is probably

ungrammatical. Mechanisms such as competition and blocking are

inapplicable under Gold’s model because they rely on just such a guarantee.

Conservatism is a property of virtually all successful learning strategies

in Gold’s framework and the language classes that aren’t learnable are

precisely those for which conservatism is either not possible or doesn’t help.

So conservatism in itself is not a solution to the learnability problem, and, as

MacWhinney points out, we know that children are not strictly conservative.

Conservatism must at times be abandoned in lieu of generalization, so I

would remove conservatism from the list of solutions and demote it to a rule

of thumb. In a Bayesian framework, conservatism is that aspect of the system

that maximizes fit with the data, while generalization strives to maximize

model simplicity.

Truly solving the logical problem of language acquisition requires altering

the assumptions of the learning framework. MacWhinney hit upon one

aspect of this in his suggestion that the end-state criterion should not require

DISCUSSION

955



settling on a perfect grammar, but a close approximation to one (Horning,

1969). However, the other critical part of this reformulation is the assump-

tion that language is stochastic and that the frequency of sentences or

structures observed by a learner are governed by a probability distribution.

As a result, the past is a more or less accurate predictor of the future and

the learner can reasonably assume that any structure not observed for a

certain period of time is either ungrammatical or is sufficiently rare as to be

insignificant.

In Rohde & Plaut (1999), we distinguished between INDIRECT negative

evidence, which includes information gained from responses to a child’s

productions, such as the parents’ misunderstandings or rephrasings, and

IMPLICIT negative evidence, which exists only in the statistics of passively

observed language. The usefulness of indirect negative evidence remains

a matter of debate, but what we would call implicit negative evidence,

MacWhinney’s seventh solution, relies on the assumption of stochastic

presentation, which is a much stronger constraint than that placed on

Gold’s text source. More rapidly applicable forms of competition or

blocking rely on an assumption of a one-to-one mapping from meanings

to words or structures. This, of course, assumes the presence of semantics,

a critical half of the puzzle that is almost totally neglected in formal

learning theory.

The introduction of probabilistic information raises some serious

questions. Most notably, which statistics are to be monitored and how is

this information used? Tracking the frequency of every possible complex

contingency would be prohibitively expensive in terms of the memory and

time required. But how can the learner find out if a contingency is

important unless it is tracked? Linguists have long agreed that statistics

gathered over surface forms, such as n-grams, cannot go very far in

modelling natural language. Effective use of statistics requires generalization.

To begin with, words must be clustered into classes, on the basis of

surface co-occurrence statistics and meaning-to-utterance correspondences.

Some statistics can then be recorded over classes, rather than over

individual words, and further structure can be induced from the statistical

relationships between classes in the input. What MacWhinney calls cue

construction is one aspect of a very central process of structure-building

that subserves and is driven by observed statistical information.

All of this seems quite difficult to realize in a discrete, symbolic system

without extensive prior knowledge of the types of structures and relation-

ships to expect. However, distributed connectionist networks may represent

a solution. Such networks have demonstrated the ability to learn simple

stochastic languages from positive presentation and, in doing so, to acquire

representations of basic lexical categories that subserve additional learning

(Elman, 1991).
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A key distinction between distributed networks and localist networks or

symbolic systems is that the internal representations learned by distributed

networks inhabit a high-dimensional, continuous space. Through learning,

representations with particular statistical similarities can be gradually pulled

together along some or all of these dimensions to form functional clusters

or categories. Subsequent learning involving one or more of these items will

naturally generalize to similar items. However, such representations, unless

overtrained, typically retain some of their uniqueness. If more subtle con-

tingencies become apparent in the future, differently affecting the members

of a category, the representations can be pulled apart again, possibly along

orthogonal dimensions. Such representations can, under various pressures,

effectively underly either graded or rule-like behaviour, both of which

are required to model natural language syntax and semantics. We are just

beginning to understand how the ability to induce structure from stochastic

input might scale up to explain natural language learning without a reliance

on extensive, detailed innate knowledge. A step in this direction is the

recurrent, distributed network model presented in Rohde (2002), which is

capable of learning, within a reasonable error tolerance, to comprehend and

produce a fairly complex subset of English. This network primarily learns

production on the basis of formulating predictions during comprehension,

but can also use its comprehension system to refine productions by means

of monitoring.

In summary, formal learning under Gold’s model is even more difficult

than MacWhinney suggests. However, adopting the alternative assumption

that language is stochastic and need only be learned to a close approximation

opens up a wealth of possible solutions to the learning problem. Distributed

neural networks seem particularly well-adapted to learning from implicit

negative evidence in a stochastic environment and are able to employ moni-

toring and exhibit such behaviours as competition and cue construction.
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