
Dependency Parser Combination with Weighted Voting

Abstract

We investigate the combination of de-
pendency parsers using voting and three
weighting schemes. The recent develop-
ment of accurate deterministic classifier-
based parsers (Yamada and Matsumoto,
2003; Nivre 2004) makes this type of
combination particularly attractive. We
show that deterministic parsers in com-
bination offer accuracy equal to that of
statistical constituent parsers, and higher
than that of any of the deterministic
parsers in isolation. This is also true for
root accuracy, which has so far been a
challenge for deterministic parsers. When
statistical constituent parsers are included
in the combination, we obtain higher accu-
racy than previously published results on
dependency parsing using the Penn Tree-
bank: an overall dependency accuracy of
93.9%, and root accuracy of 97.6%.

1 Introduction

In recent years, dependency-based formalisms have
been shown to be useful in a number of sce-
narios, such as machine translation (Ding and
Palmer, 2004), semantic role labeling (Hacioglu,
2004) and question answering (Punyakanok et al.,
2004), to name a few. In addition, recently devel-
oped classifier-based dependency parsers (Nivre and
Scholz, 2004; Yamada and Matsumoto, 2003) are al-
most as accurate in producing dependency structures
as state-of-the-art constituent parsers, such as those
of Collins (1997) and Charniak (2000), although the

identification of dependency tree root nodes remains
a challenge.

Having different parsers that produce dependency
structures with high accuracy raises the question of
whether we can combine the output of these parsers
to achieve even higher accuracy. In a way similar to
how Henderson and Brill (1999) combined three sta-
tistical constituent parsers with voting, where each
parser votes for constituents that make up a com-
bined parse tree, we explore the combination of dif-
ferent dependency parsers in a weighted dependency
voting scheme.

2 Dependency Voting

In this work we focus on unlabeled dependencies,
also referred to as barebones dependency structures
and described in Eisner (1996). In this scheme, the
syntactic analysis of an n word sentence is repre-
sented by n-1 dependencies, each containing one
head word and one dependent word. Every word in
the sentence except for one is assigned exactly one
head, and words may be heads of multiple depen-
dents. The single word that remains without a head
is the root of the dependency tree. Figure 1 shows
an unlabeled dependency tree. For practical reasons,
we assign the root word a special head called the
LeftWall. This is simply a word appended to the be-
ginning of every sentence, so that every word in the
original sentence has exactly one head.

If m different parsers output a set of dependencies
(forming a dependency structure) for a given sen-
tence, combining these dependencies through voting
is straightforward. Each of the m parsers specifies
exactly one head for each of the n words in the sen-
tence. So, for each word, there are m votes (one by



[LeftWall]

(root)

(original sentence)

The boy saw the dog with the telescope

Figure 1: An unlabeled dependency structure. The LeftWall is inserted to be the head of the root word, so
that every word in the original sentence has a head.

each parser) for what the head of that word should
be. This means that voting is done on a word-by-
word basis, and there is no guarantee that the final
voted set of dependencies for a sentence will be a
well-formed dependency tree.

One simple improvement to the basic dependency
voting scheme is to allow parsers to have different
weights associated with their votes. In other words,
if we know in advance that parser A is more accurate
on average than parser B, we can allow parser As
vote to be more influential that parser Bs vote simply
by giving it a larger weight.

A second improvement to the voting scheme, dis-
cussed later in section 4.4, is to enforce the construc-
tion of well-formed dependency trees. This can be
done by abandoning the word-local view of voting
and maximizing the votes for an entire dependency
tree using either a maximum spanning tree algorithm
or dynamic programming.

As in the case of Henderson and Brills constituent
voting, a potential problem with our dependency
voting scheme is the assumption of independence
among the errors generated by the different parsers.
If multiple parsers systematically vote for the same
incorrect dependencies, the accuracy of the voted
dependency structure may be lower than that of one
or several of the voting parsers.

3 Classifier-Based Dependency Parsing

Recent work on dependency parsing by Nivre and
Scholz (2004) and Yamada and Matsumoto (2003)
shows that dependency structures can be built accu-

rately in a deterministic fashion, where a classifier
decides on a single parsing action to take at each step
of a parsing algorithm with no backtracking. We
briefly describe these two approaches, and present
our own classifier-based parsers used in voting.

3.1 Yamada and Matsumoto (2003)

Yamada and Matsumotos parser achieves high de-
pendency accuracy (90.7%) with an algorithm of
quadratic run-time complexity and support vector
machines (SVMs) for parser action classification. In
a nutshell, the algorithm consists of moving a slid-
ing window of two words over the input string from
left to right, and at each position deciding whether
there is a dependency with the word on the left as
the head, with the word on the right as the head, or
no dependency. If a dependency is found (and no
further dependencies are expected to have the depen-
dent word as a head), the dependent word is removed
from the input string. Once the moving window
reaches the end of the sentence, the process starts
again at the beginning of the sentence. Parsing ends
when a single word is left in the input string (and a
complete dependency structure is built with the re-
maining word as the root), or no more dependen-
cies can be formed (in which case the input string is
rejected, although partial dependency structures can
be recovered).

The classifier used to make the parsing decisions
is trained by running the algorithm on sentences
for which the dependency structure is known in ad-
vance, and associating a set of features from the



parsers configuration with the correct action. Fea-
tures used for classification include the words in
the sliding window and their parts-of-speech (POS),
words to the left and right of the window (with POS),
and already determined dependents of the words in
the window.

3.2 Nivre and Scholz (2004)

Nivre and Scholzs parser has lower accuracy (about
87.7%) on unlabeled dependencies, but its algo-
rithm is linear on the size of the input string. Nivre
and Scholz use a simple left-to-right stack-based
shift/reduce algorithm. This is simply an instance
of the LR parsing algorithm for binary branching
trees, but a classifier that decides on the parsing ac-
tion replaces the LR table. The classifier used is k-
nearest neighbors, and features include the word on
top of the stack and its POS, the next word in the
input string and its POS, the next n words in the
input string (with POS), and the previously deter-
mined dependents of the word on top of the stack.
Although we are interested in unlabeled dependen-
cies, it is interesting to note that Nivre and Scholzs
parser is actually designed for labeled dependencies,
where the classifier also decides the dependency la-
bels, and the labels can also be used as features.
This results in having several different actions for
the classifier to choose from. Training of the k-NN
classifier is also done by running the algorithm on
sentences with known dependency structures, and
associating the correct parser actions with features
that correspond to the parsers current state.

3.3 Our Dependency Parsers

Despite the similarities in Yamada and Matsumo-
tos parser and (an unlabeled dependency version of)
Nivre and Scholzs parser, they differ in two impor-
tant ways. First, they differ in their choice of classi-
fier. Second, their algorithms are different. While
Yamada and Matsumoto use a quadratic run-time
complexity algorithm, Nivre and Scholz use a lin-
ear algorithm. Despite its advantage in complexity,
Nivre and Scholzs parser is less accurate. Nivre and
Scholz argue that the difference in accuracy is ex-
plained by the use of a slightly less accurate part-
of-speech tagger, the absence of true dependency
labels in the training data, and the use of a linear
algorithm that performs a single pass over the in-

put string, as opposed to Yamada and Matsumotos
multiple passes. Our experiments indicate that, al-
though these factors may account for a small part
of the difference, none of them are nearly as im-
portant for parser accuracy as the choice of classi-
fier and features. Based on this observation, we de-
scribe the parsers we used for voting. The main dif-
ference we exploited among the parsers was the di-
rectionality of processing (left-to-right, right-to-left,
bi-directional). Because of the deterministic nature
of these parsers, the order in which words are pro-
cessed makes a significant difference in the state of
the parser at any given point. By varying directional-
ity, we hope to achieve the diversity in results that is
necessary for successful voting, while preserving the
accuracy of each individual parser (which is, clearly,
also important for successful results in voting).

LR-SVM

Our first parser (called LR-SVM) runs in linear
time, like the one of Nivre and Scholz, but is about
as accurate as Yamada and Matsumotos.

The LR-SVM parser uses the same basic left-to-
right algorithm as Nivre and Scholz parser, but be-
cause we are dealing with unlabeled dependencies,
we simply ignore the dependency types. Although
the same algorithm is used, we have additional fea-
tures that are used for classifying parser actions. In
addition to the features used by Nivre and Scholz,
we use:

• the word and POS of the item immediately be-
low the top of the stack, and the item immedi-
ately below that;

• the words and POS surrounding (to the left and
to the right, in the original sentence) the item
on top of the stack;

• the words and POS surrounding (to the left and
to the right, in the original sentence) the next
word in the input;

• a distance feature that simply reflects how
many words apart the word on the top of the
stack and the next word in the input are.

Finally, instead of using k-NN for classification,
we use SVMs with a third degree polynomial kernel
in an all-against-all scheme for multi-class classifi-
cation.



RL-SVM

Our second parser, RL-SVM, works in the same
way as LR-SVM, except that (as the name suggests)
processing is done right-to-left, instead of left-to-
right. As we will see in section 4.3, the accuracy
of RL-SVM is slightly lower than that of LR-SVM.

BIDIR-SVM

Our third parser, BIDIR-SVM, uses an algorithm
that is very similar to the one used by Yamada and
Matsumoto. The main difference is that instead of
moving the sliding window from left-to-right at each
iteration over the input string, we alternate between
moving the window from left-to-right and right-to-
left. The features used correspond to Yamada and
Matsumotos feature set with a context length of two
words to the left and two words to the right, with
the addition of the distance feature also used in LR-
SVM and RL-SVM.

LR-kNN, RL-kNN and BIDIR-kNN

Although the use of k-NN instead of SVMs in the
three parsers described above results in a consistent
and significant drop in accuracy, it is possible that
their inclusion in the weighted voting scheme could
be beneficial. It is important to note that even a sin-
gle different classification decision in the LR and RL
parsers could result in a significant difference in the
dependencies generated, once again because of the
deterministic nature of the parsers. This effect is
lessened in the BIDIR parser, since it makes multi-
ple passes over the input, and a single difference has
more ample opportunity to remain isolated. These
are important considerations, since the inclusion of
parsers that make similar errors could hurt the voting
scheme, as discussed in the end of section 3.3.

4 Experiments

We combined the parsers described in section 3
using the weighted dependency voting scheme de-
scribed in section 2. In addition, we present a com-
bination approach that guarantees a dependency tree
as output. The details of these experiments are de-
scribed below.

4.1 Data

As it is common in efforts to develop and evaluate
corpus-based parsers for English, we use the stan-

dard split of the Wall Street Journal corpus of the
Penn Treebank for training (sections 02 to 21) and
testing (section 23). Section 22 was used during
parser development, especially for feature selection
and parameter tuning, and section 00 was used to
set the voting weights, as explained in sections 4.3.
Like in other recent work on dependency parsing
using the Penn Treebank, constituent trees are con-
verted to unlabeled dependencies automatically us-
ing a slightly modified version of the Collins (1996)
head-table for lexicalizing constituent trees.

4.2 Single Parser Evaluation

Each parser described in section 3.3 was evaluated
on section 23. We used two evaluation metrics for
dependencies, also used by Nivre and Scholz (2004):

• Attachment Accuracy, also called Unlabeled
Attachment Score (UAS): the number of cor-
rect dependencies (including root dependencies
to LeftWall), divided by total number of depen-
dencies (we do not include punctuation in the
calculation of UAS);

• Root Accuracy (RA): the number of correct
root assignments, divided by the total number
of root assignments.

Table 1 shows the results for each of our parsers,
the parsers of Nivre and Scholz (N&S) and Yamada
and Matsumoto (Y&M) 1, and the dependencies ex-
tracted from the output of the parsers of Charniak
(2000) and Collins (1997)2.

A few interesting points are worth noting. First,
the right-to-left parsers are significantly less accu-
rate than their left-to-right counterparts. Also, the
bidirectional parsers are less accurate than the left-
to-right parsers, despite their many passes over the
input string. As expected, each parser that used
SVMs outperformed their k-NN counterparts. In
particular, LR-SVM was outperformed in attach-
ment score and dependency accuracy only by the
Charniak parser. Finally, the root accuracy of all of
the deterministic parsers is well below the root ac-
curacy for the two statistical parsers.

1N&S was retrained for these experiments, and Y&M is our
implementation of Yamada and Matsumoto’s parser.

2We use Bikel’s implementaion of the Collins parser in our
experiments (Bikel, 2002).



Parser UAS RA
LR-SVM 91.2 92.6
RL-SVM 90.1 86.3
BIDIR-SVM 89.6 89.1
LR-kNN 88.1 85.1
RL-kNN 86.3 83.9
BIDIR-kNN 87.8 86.9
N&S 87.7 85.0
Y&M 90.7 91.7
Charniak 92.3 97.3
Collins 91.2 96.0

Table 1: Evalulation single parsers on dependencies
from section 23 of the WSJ corpus of the Penn Tree-
bank, using unlabeled attachment score (UAS) and
root accuracy (RA).

4.3 Voting Evaluation

We evaluate dependency voting under three condi-
tions: simple voting (no weights), weighted voting
(each parser is assigned a single weight), and POS-
weighted voting (each parser is assigned a weight for
every part-of-speech of dependent words). In addi-
tion, we evaluate a combination strategy that com-
bines the familiar CKY parsing algorithm with the
idea of voting, and guarantees well-formed depen-
dency trees.

Simple Voting

The simplest voting scheme assigns equal weight
to the dependencies generated by every parser.
Voting is done on a word-by-word basis (or
dependency-by-dependency basis, since there is one
dependency per word when we count the root depen-
dency to the LeftWall). For each word, we check the
head chosen by each of the parsers. Each of these
heads receives one vote. The head with most votes
is chosen as the head for the current word (ties are
broken randomly).

It is easy to see how combining parsers in this
scheme can produce poor results. For example, con-
sider parser RL-kNN. Although it has much lower
accuracy than LR-SVM, its vote is worth just as
much. Additionally, if two or more of the parsers
make many of the same mistakes, the voting can eas-
ily lead to erroneous analyses. To avoid these prob-
lems, the set of parsers used with simple voting was

determined by trying every subset of our six parsers
on section 00. Not surprisingly, the subsets con-
taining LR-SVM, RL-SVM and BIDIR-SVM gen-
erally performed better. The optimal subset on sec-
tion 00 was LR-SVM, RL-SVM, BIDIR-SVM and
LR-kNN.

On the test set (section 23), the unlabeled at-
tachment score of simple voting with the opti-
mal subset is 91.9%, and root accuracy is 96.0%.
In other words, using only deterministic classifier-
based parsers, we obtain dependencies that are just
as good as the ones obtained with the Collins parser.
More surprisingly, the root accuracy of the com-
bined parsers is also just as high, showing that it
is possible to achieve high root accuracy with de-
terministic parsers. If we restrict the voting only to
parsers that run in linear time (disqualifying BIDIR-
SVM, but making the entire parsing process linear),
we still obtain 91.7% attachment score and 95.6%
root accuracy.

Weighted Voting

The weighted voting scheme is similar to simple
voting, but each parser is assigned a weight for the
votes it casts. Instead of just adding the number of
votes for each dependency, we add the weights of
each vote. We determine these weights by looking at
individual parser accuracy a development set. More
specifically, the weights for each parser are set to the
unlabeled attachment score for the parser on section
00.

Combining the same optimal set of parsers as be-
fore, each now weighted by their performance on
section 00, in the weighted voting scheme gives us
an attachment score of 92.2%, and root accuracy of
94.1%. It is interesting that although dependencies
are slightly more accurate overall than in simple vot-
ing, root accuracy is lower. This is not entirely sur-
prising, given that the parser weights were optimized
on all dependencies (the UAS metric).

POS-Weighted Voting

Instead of assigning a single weight to each
parser, we can assign a set of weights, each as-
sociated with the part-of-speech of the dependent
word of the dependency in question. The idea be-
hind POS-weighted voting is that certain parsers
may be better at attaching items with certain parts-



Combination UAS RA

Simple Voting 91.9 96.0
Weighted 92.2 94.1
POS-Weighted 92.3 94.9
Simple(+Ch/Co) 93.5 97.8
Weighted(+Ch/Co) 93.8 97.3
POS-Weighted(+Ch/Co) 93.9 97.6

Table 2: Results for voting experiments, evaluated
as unlabeled attachment score (UAS) and root ac-
curacy (RA). +Ch/Co indicated the inclusion of the
Charniak and Collins parsers in the voting.

of-speech. By allowing weights to vary according
to parts-of-speech, we attempt to capitalize on these
differences. Once again these weights are set ac-
cording to accuracy on section 00. In this case, accu-
racy for each part of speech is measured separately.

This scheme, in fact, generates the best overall re-
sults, with 92.3% attachment score and 94.9% root
accuracy.

Summary of Results

The results for voting are summarized in table 2.
In addition, we also show the results for voting when
the Charniak parser and the Collins parser are in-
cluded in the voting (denoted by +Ch/Co).

4.4 Obtaining Well-Formed Dependency Trees

As mentioned in section 2, voting decisions are local
to each word, and there is no guarantee that a depen-
dency set resulting from voting for a given sentence
will form a dependency tree, or that the dependen-
cies will even be completely connected or free of
cycles.

We present two ways to combine multiple depen-
dency parses of a sentence to produce a well-formed
dependency tree. In both cases, we start by creat-
ing a graph where each word in the sentence is a
node. We then create directed edges between nodes
corresponding to words for which dependencies are
obtained from any of the parsers. The edges are
weighted according to what parser is responsible for
generating the edge. These weights are the same
weights used in weighted voting or POS-weighted
voting. In cases where more than one parser in-
dicates that the same edge should be created, the
weights are added, just as in the voting scheme. As

long as any of the parsers creates a valid dependency
tree for the sentence, the directed weighted graph
created this way will be fully connected.

Once the graph is created, we can simply find
its maximum spanning tree, using, for example,
the Chu-Liu/Edmonds directed MST algorithm (Chu
and Liu, 1965; Edmonds, 1967). The maximum
spanning tree maximizes the votes for dependen-
cies given the constraint that the resulting structure
must be a tree. However, there is no guarantee
against crossing branches. While this may seem un-
desirable, the resulting tree generated from the com-
bination of parsers should rarely contain crossing
branches (for English). In addition, this would be
a suitable scheme for combining structures in free-
word-order languages, where branches are expected
to cross.

A second option is to use dynamic programming
to reparse the sentence. We proceed just as if we
were parsing the sentence using the CKY algorithm,
but we restrict the creation of new items in the CKY
chart to pairs of words connected by the appropri-
ate edges in the directed weighted graph, and assign
these items the weight of their respective edges. In-
stead of the usual multiplication of probabilities, we
simply add the values associated with each item used
in the creation of a new item, and the value of the
graph edge that allowed that item to be created.

Although it may seem that this is a lot of extra
work, the search space described by the weighted
directed graph is usually small, limiting the search
for the best tree. The results obtained with either
method are very close to results obtained voting
with the same weighting scheme. For example, if
the parser weights are set in the same way as for
weighted voting, we obtain 92.3% attachment ac-
curacy and 94.3% root accuracy, when we combine
deterministic parsers only. When we combine de-
terministic and statistical parsers, we obtain 93.9%
attachment accuracy and 97.3% root accuracy.

4.5 Conclusion

We have presented a dependency parser combina-
tion scheme based on weighted voting. We used a
number of deterministic classifier-based dependency
parsers, exploiting their differences in the order they
process the input, and the method used for classifi-
cation. We have also discussed how to select parsers



to be included in the voting process by using a de-
velopment set.

The results obtained by combining deterministic
parsers are quite good, surpassing previously pub-
lished results for dependency parsers, and closely
matching the results obtaining by extracting depen-
dencies from state-of-the-art statistical constituent
parsers. The identification of root words, considered
a challenge for deterministic parsers, can be done
accurately by voting, even when we use just three
parsers that only make a single pass over the input.
When we combine deterministic parsers with statis-
tical parsers, we achieve even higher accuracy, close
to 94% over all dependencies.

Finally, we have also described ways to obtain
fully consistent dependency trees without sacrificing
the accuracy obtained with voting, by using either
maximum spanning trees or dynamic programming.

As future work, we plan to leverage on the dif-
ferences between parsers to perform domain adapta-
tion, possibly using semi-supervised learning.
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