
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=paph20

Aphasiology

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/paph20

Enhancing the classification of aphasia: a
statistical analysis using connected speech

Davida Fromm, Joel Greenhouse, Mitchell Pudil, Yichun Shi & Brian
MacWhinney

To cite this article: Davida Fromm, Joel Greenhouse, Mitchell Pudil, Yichun Shi & Brian
MacWhinney (2022) Enhancing the classification of aphasia: a statistical analysis using connected
speech, Aphasiology, 36:12, 1492-1519, DOI: 10.1080/02687038.2021.1975636

To link to this article:  https://doi.org/10.1080/02687038.2021.1975636

View supplementary material 

Published online: 21 Sep 2021.

Submit your article to this journal 

Article views: 283

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=paph20
https://www.tandfonline.com/loi/paph20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/02687038.2021.1975636
https://doi.org/10.1080/02687038.2021.1975636
https://www.tandfonline.com/doi/suppl/10.1080/02687038.2021.1975636
https://www.tandfonline.com/doi/suppl/10.1080/02687038.2021.1975636
https://www.tandfonline.com/action/authorSubmission?journalCode=paph20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=paph20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/02687038.2021.1975636
https://www.tandfonline.com/doi/mlt/10.1080/02687038.2021.1975636
http://crossmark.crossref.org/dialog/?doi=10.1080/02687038.2021.1975636&domain=pdf&date_stamp=2021-09-21
http://crossmark.crossref.org/dialog/?doi=10.1080/02687038.2021.1975636&domain=pdf&date_stamp=2021-09-21


Enhancing the classification of aphasia: a statistical analysis 
using connected speech
Davida Fromm a, Joel Greenhouse b, Mitchell Pudilb, Yichun Shib 

and Brian MacWhinney a

aDepartment of Psychology, Carnegie Mellon University, Pittsburgh, PA, USA; bCarnegie Mellon University, 
Pittsburgh, PA, USA

ABSTRACT
Background: Large-shared databases and automated language 
analyses allow for the application of new data analysis techniques 
that can shed new light on the connected speech of people with 
aphasia (PWA).
Aims: To identify coherent clusters of PWA based on language 
output using unsupervised statistical algorithms and to identify 
features that are most strongly associated with those clusters.
Methods & Procedures: Clustering and classification methods 
were applied to language production data from 168 PWA. 
Language samples were from a standard discourse protocol tap
ping four genres: free speech personal narratives, picture descrip
tions, Cinderella storytelling, and procedural discourse.
Outcomes & Results: Seven distinct clusters of PWA were identi
fied by the K-means algorithm. Using the random forest algorithm, 
a classification tree was proposed and validated, showing 91% 
agreement with the cluster assignments. This representative tree 
used only two variables to divide the data into distinct groups: total 
words from free speech tasks and total closed-class words from the 
Cinderella storytelling task.
Conclusion: Connected speech data can be used to distinguish 
PWA into coherent groups, providing insight into traditional apha
sia classifications, factors that may guide discourse research and 
clinical work.
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Introduction

Two seemingly opposite things are simultaneously true of every individual with aphasia. 
Each individual’s presentation is unique, and yet, the general pattern of expressive and 
receptive language skills will most likely fall into one of the several typical patterns. As 
many have observed, the common groupings allow for generalisations that help guide 
assessment and treatment planning, communication among professionals, understand
ing of neural organization of language, and targeted scientific investigations (Bartlett & 
Pashek, 1994; Beeson & Bayles, 1997; Crary et al., 1992; Hillis, 2007; Marshall, 2010). Within 
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those groups, though, there can be big differences in severity and other variables that 
make them far from homogeneous. The question is whether large shared databases and 
automated language analyses allow for the application of new data analysis techniques 
that can teach us something new about language skills in aphasia, help us be more 
efficient and effective in our clinical research and management, and understand more 
about the brain and language.

The aphasia literature includes many good articles on aphasia classification and 
aphasia syndromes. The topic has been analysed, reviewed, summarized, and challenged 
from many perspectives including neuropsychological theories, psycholinguistic models, 
expressive and receptive language symptoms, correlations of language symptoms with 
lesion sites, neuroimaging techniques, neural networks, statistical modeling, and data 
mining techniques (Akhutina, 2016; Ardila, 2010; Axer, Jantzen, Berks, Südfeld et al., 2000; 
Axer, Jantzen, Berks, von Keyserlingk et al., 2000; Axer, Jantzen, von Keyserlingk et al., 
2000; Bates et al., 2005; Caplan, 2003; Dick et al., 2001; Hillis, 2007; Jantzen et al., 2002; 
Kasselimis et al., 2017; Marshall, 2010; McNeil & Kimelman, 2001). Scientific advances 
continue to bring new data that allow for reinterpretations of conventional knowledge.

Aphasia syndrome classification: classic model

The classic neurobiological model, based on discoveries and insights over almost 
100 years by luminaries like Broca, Wernicke, Lichtheim, and Geschwind, has informed 
much of aphasia syndrome classification for clinical and research purposes (Ben Shalom & 
Poeppel, 2008; Sundet & Engvik, 1985; Tremblay & Dick, 2016). Plenty has also been 
written about problems with the typical classification (i.e., anomic, Broca’s, conduction, 
global, transcortical, Wernicke’s, etc.), for example: the classification features (e.g., impair
ments in naming and grammar) overlap aphasia category boundaries, the groups are not 
homogeneous, the syndromes may relate more to the vascular organization of the brain 
than to any particular site of lesion, and not all people with aphasia (PWA) fit into the 
traditional types (Axer et al., 2000; Caplan, 2003; Schwartz, 1984). Caplan (2003) also 
explained that the classical syndromes relate to performance on overall language perfor
mance (e.g., comprehension, naming, repeating) as opposed to performance of specific 
language tasks. Other issues include individual variability in brain anatomy, language 
networks, and the fact that terms such as “comprehension” and “fluency” are too generic 
(Kasselimis et al., 2017).

As this project focused on discourse variables, we concentrate here on aphasia-type 
classification research based on features of connected speech. One example of 
a discourse feature that overlaps category boundaries is the production of grammatical 
errors in connected speech. Errors of grammatical omission and simplification (agram
matic errors) are typically associated with nonfluent aphasia (mostly Broca’s aphasia), 
whereas other grammatical errors (paragrammatic errors of substitution, omission, addi
tion) occur more often in fluent aphasia (mostly Wernicke’s aphasia). Paragrammatic 
errors are more difficult to identify and may coexist with agrammatic errors in some 
PWA (Matchin et al., 2020). Further, several methods exist to quantify agrammatism in 
aphasia, such as Northwestern Narrative Language Analysis (NNLA; Thompson et al., 1995) 
and Quantitative Production Analysis (QPA; Saffran et al., 1989), but no such methods are 
available for paragrammatism. Gordon (1998) showed that almost half of a group of 24 
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practicing speech-language pathologists (SLPs) identified grammatical factors as the most 
salient characteristic contributing to impressions of fluency in aphasia. She found that 
only 3 of 10 PWAs were unanimously classified as fluent or non-fluent by 24 practicing 
clinicians rating expressive language samples. Speech fluency, however, is also compro
mised by naming impairments that are common in both fluent and non-fluent aphasia 
types. Word-finding problems can appear in connected speech as hesitations, fillers, 
revisions, and sentence fragments that may be perceived as fluency deficits and agram
matic (or non-fluent) aphasia (Clough & Gordon, 2020). Thus, grammatical deficits are not 
necessarily a clear and distinct classifying feature for a particular type of aphasia or even 
a determination of fluent versus non-fluent aphasia. Interestingly, dissociations between 
fluency and grammatical production have been reported in narrative speech of indivi
duals with primary progressive aphasia (Thompson et al., 2012). A more nuanced 
approach to the measurement of grammar usage as well as fluency in aphasia could 
further inform basic characterizations of connected speech in the traditional aphasia 
syndromes.

The Aphasia Quotient (AQ) subtest scores of the Western Aphasia Battery-R (WAB; 
Kertesz, 2007) are often used to determine type of aphasia, based on spontaneous speech 
fluency, auditory comprehension, repetition, and naming performance. Most relevant to 
this project is that the spontaneous speech fluency score (≥5 vs. ≤4) separates the types 
into fluent and non-fluent categories. The score is a rating based on subjective judgments 
mostly about quantity and grammaticality of output along with other features, such as 
word-finding difficulty, paraphasias, and hesitations. Since its initial version in 1982, 
several articles have addressed WAB classification issues (Crary et al., 1992; Ferro & 
Kertesz, 1987; John et al., 2017; Swindell et al., 1984; Trupe, 1984; Wertz et al., 1984). At 
the level of aphasia types, Crary et al. (1992) used a cluster analysis and found that only 
30% of their 47 participants’ original WAB aphasia types corresponded with the classifica
tion that resulted from their Q-analysis. Each factor contained participants with multiple 
WAB aphasia types. As an example, one of the three factors included participants whose 
original types (based on AQ subtest scores) were global, anomic, Broca’s, conduction, and 
Wernicke’s. Wertz et al. (1984) found that the WAB and another commonly used aphasia 
test, the Boston Diagnostic Aphasia Exam (Goodglass & Kaplan, 1983), agreed much better 
in measuring severity than in classifying aphasia types. It seems useful, then, to consider 
ways to enhance the current classification system with regard to characteristics of 
spontaneous speech.

Aphasia classification: multivariate and machine learning approaches

Recently, researchers have taken a more empirical approach and applied new techniques 
to aphasia classification. (Readers are urged to consult Wilson & Hula, 2019 for a survey of 
recent multivariate approaches to studying the multifactorial aspects of aphasia.) For 
example, logistic regression, a statistical approach used to model a binary variable, was 
used to predict fluent or non-fluent group membership based on judgments of picture 
descriptions from a mixed group of adults with no brain damage, unilateral left hemi
sphere stroke with predominant frontal lobe damage, semantic dementia, Alzheimer’s 
disease, mixed dementia, traumatic brain injury, and posterior cerebral artery stroke with 
damage to the posterior and inferior region of the temporal lobe (Park et al., 2011). Results 
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showed that of five predictors, three were able to discriminate fluency status with over 
95% accuracy: productivity, speech rate, and audible struggle. In fact, productivity had the 
greatest influence on judgments, as listeners (three doctoral level SLPs) were 18 times 
more likely to judge speakers “fluent” if they verbalized for more than 50% of the time, 
that is, produced more output (Park et al., 2011).

Another approach to classification uses neural networks, which look for similarities 
among example inputs and then classify similar cases into groups. This is a machine 
learning technique, in which a computer is trained to learn by examples that have been 
classified in advance. Using this approach with spontaneous speech subtest scores from 
the Aachen Aphasia Test (AAT; Huber et al., 1984), Axer, Jantzen, Berks, von Keyserlingk 
(2000) found that the neural network was better at classifying Broca’s and global aphasia 
(both over 95% correct) than anomic and Wernicke’s aphasia (75% and 83%, respectively). 
A second test with four different subtest scores (melody of speech, grammar, repetition, 
and reading aloud) yielded improved classifications, all above 90% correct for Broca’s, 
global, and Wernicke’s groups, and improved but lower classification accuracy for the 
anomic (83%) group. The authors concluded that the anomic group was not as homo
genous as the others. In another report, Axer, Jantzen, von Keyserlingk (2000) used AAT 
data from 254 patients to compare the neural network model with a fuzzy model. Briefly, 
these models use fuzzy logic, which is more like human reasoning and decision making 
and allows for partial membership in a particular group. The fuzzy model still involves 
training based on classifications made to a training set before classifying cases from the 
test set. This model succeeded in building neural networks that successfully classified 87% 
of patients based on spontaneous speech data alone and 92% of patients based on 
additional comprehensive data (e.g., including comprehension, repetition, reading, writ
ing). The standard for comparison was an expert’s diagnosis of aphasia type using the 
basic aphasia syndromes: Broca’s, Wernicke’s, global, anomic, conduction. These authors 
encouraged interdisciplinary and collaborative work to add cases and test models to 
better understand the language impairment and facilitate the diagnostic process.

Using the AAT database of 146 patients (with diagnoses of Broca, Wernicke, global, or 
anomic aphasia), Akbarzadeh-T and Moshtagh-Khorasani (2007) also compared neural 
networks and a hierarchical fuzzy model to aphasia diagnosis. Like Axer and colleagues, 
they first used data from the spontaneous speech subtest and then used a more com
prehensive set of scores, achieving classification accuracies of 90.82% and 91.89%, 
respectively. The fuzzy approach achieved classification accuracies of 91.30% with the 
spontaneous speech data only and 93.61% with the comprehensive set of test scores. 
Statistical testing showed that for spontaneous speech tests only, the fuzzy model 
performed better than the neural network. For the comprehensive data set, the only 
advantage of the fuzzy model was that it required fewer measurements (grammar, 
compound word repetition, confrontation naming subtests) and calculated more quickly 
than the neural networks.

Purpose

In this paper, we investigated enhanced systems of aphasia classification by applying 
unsupervised clustering methods, using only data from the connected speech of PWA. 
This study differs from those just reviewed in that they used methods to classify 
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participants according to previously determined aphasia categories (fluent/non-fluent, 
aphasia types), whereas the goal here is to allow the data to suggest new categories for 
classification of PWA. Instead of using a “supervised” approach where the classification of 
new participants is based on an existing classification system, we used an “unsupervised” 
approach where a new classification of PWA was generated based on similarities of 
discourse characteristics and not on previously determined aphasia categories. Once 
the new categories were identified, we then investigated the characteristics of each 
new category, that is, which variables best describe each new category, using supervised 
statistical learning methods (e.g., classification trees). The use of objective, quantitative 
criteria along with modern statistical methods may help identify key characteristics of 
spoken discourse that can better inform the process of aphasia classification for both 
clinical and research purposes. With over 500 different measures used in the literature to 
analyze connected speech, clinicians and researchers have been working to identify a core 
outcome set for aphasia treatment research (Bryant et al., 2016). Results of this study can 
make an important contribution to recent calls for a more systematic approach to 
discourse measurement and analysis in aphasia studies (Dietz & Boyle, 2018; Kintz & 
Wright, 2018; Stark et al., 2021).

Methods

Participants and materials

Data were collected from the AphasiaBank database (https://aphasia.talkbank.org/), 
a shared database of multimedia interactions for the study of communication in aphasia. 
At the time of this study, the database contained transcriptions of standard discourse 
protocols from 306 PWA and extensive demographic data on all participants. In addition, 
three standardized measures were administered: (1) the AQ subtests from the WAB-R; (2) 
the short form of the Boston Naming Test-Second Edition (BNT; Kaplan et al., 2001); and 
(3) the Verb Naming Test from the Northwestern Assessment of Verbs and Sentences- 
Revised (VNT; Cho-Reyes & Thompson, 2012). Word-level and sentence-level repetition 
skills were measured using a non-standardized AphasiaBank repetition test (https:// 
aphasia.talkbank.org/protocol/repetition.pdf) with three parts: (1) closed and open word 
lists of increasing length; (2) sentences of increasing length; and (3) sentences with no 
errors, semantic errors (e.g., “The bird was caught by the worm”), and interference effects 
(e.g., “Count to ten as fast as you can”).

Participants from 23 sites around the United States and Canada were tested with 
a standard discourse protocol comprising samples of free speech (stroke story, recovery, 
important event), picture descriptions (Broken Window, Refused Umbrella, Cat Rescue), 
storytelling (Cinderella), and procedural discourse (making a peanut butter and jelly 
sandwich). A script was used for administration of the discourse tasks so that investigator 
prompts were consistent throughout. All materials (stimulus pictures, script instructions, 
list of tests administered, demographics, test results, etc.) are at the AphasiaBank website 
given earlier.1 All discourse tasks and testing, with the exception of the WAB-R and the 
comprehension tests, were recorded on video. (Participant characteristics are summarized 
below in the Statistical Analysis section.)
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Language sample transcription and analysis

Discourse samples went through a detailed process of transcription, coding, and check
ing. Transcription was done using CHAT format, which operates closely with the CLAN 
programs that allow for the analysis of a wide range of linguistic and discourse structures 
(MacWhinney, 2000). These transcripts and their media files are also at the AphasiaBank 
website (with password protection). We coded word repetitions, revisions, fillers, sound 
fragments, gestures, and unintelligible output. Word-level errors were coded in four 
primary categories: phonological, semantic, neologistic, and morphological. Utterances 
that were non-task related (e.g., comments on the task, questions about the task) were 
excluded from analysis. Two full-time, trained transcribers with at least a Bachelor’s 
degree in Linguistics or SLP reviewed each transcription, and the two reached forced- 
choice agreement on any discrepancies.

A variety of CLAN analyses were used to extract discourse variables for analysis. After 
transcripts were prepared and checked by at least two experienced transcribers, the MOR 
program was used to automatically create a morphological tier (%mor) and a grammatical 
relations tier (%gra) in the transcript. The %mor tier provides part-of-speech and mor
phological tags for each of the words in the utterance (excluding repetitions and revised 
content); the %gra tier provides a grammatical dependency parsing based on binary 
grammatical relations. Information from these tiers is used in the CLAN analyses that 
measure morphosyntactic and lexical aspects of the discourse (e.g., noun to verb ratio, 
number of embeddings) that are explained below. The morphological tagging accuracy of 
CLAN has consistently been between 95% and 97% (Huang, 2016; MacWhinney et al., 
2011).

The variables used in the analysis included discourse data from each of the four 
discourse genres as well as demographic variables and scores from the BNT, VNT, and 
the AphasiaBank Repetition Test. The discourse variables included basic measures that are 
used to characterize connected speech in aphasia and can be automatically computed 
from CHAT transcripts. They represent the major categories of discourse analysis foci used 
in 165 studies of discourse in aphasia reviewed by Bryant et al. (2016) and included 
measures of fluency, rate of speech, amount of output, morphology, lexical word class 
usage, word error frequency and type, and lexical diversity. The only variables that 
required manual coding were the word-level error codes. Table 1 contains a complete 
list of the variables. A benefit of the machine learning technique approach is that it takes 
all the variables and identifies which are the most important for both separating and 
defining groups. We can cast a wide net and let the program reveal the ones that work 
best to both distinguish and then unify the participants.

Four CLAN programs were used to generate variables for the analysis (https://talkbank. 
org/manuals/CLAN.pdf). Each command was run on the full set of transcripts for each of 
the discourse genres.

(1) The GEM command was used to extract segments representing the different 
discourse genres from the master transcripts, creating a set of CHAT files that 
included free speech tasks, picture description tasks, the storytelling task, and the 
procedural discourse task for each participant.
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(2) The EVAL command (Forbes et al., 2012) was used to generate 21 outcome 
measures for the analyses, including a variety of part-of-speech and grammatical 
variables.

(3) The FREQ command was used to (a) compute the moving average type-token Ratio 
(MATTR; Covington, 2007), a strong and unbiased measure of lexical diversity in 
aphasia (Fergadiotis et al., 2013); (b) count the number of unintelligible segments in 
each transcript; (c) count the number of filled pauses and sound fragments; and (d) 
compute the total of each type of word-level error (semantic, morphological, 
phonological, neologistic, and within-word dysfluencies) including those made in 
repetitions and revisions.

(4) The KWAL and FREQ commands were used to compute the number of utterances 
with repetitions and revisions. The KWAL command first pulls out all the utterances 
with a repetition or revision, creates a new file of those utterances, and then the 
FREQ command counts the number of utterances in that new file.

Statistical analysis

As noted earlier, our goal was to investigate enhanced systems of aphasia classification 
using unsupervised clustering methods, specifically K-means clustering. When we clus
tered the observations of a data set, we sought to partition them into distinct groups so 
that the observations within each group were quite similar to each other, i.e., the within- 
cluster variation was as small as possible, while observations in different groups were 
quite different from each other. This approach is called unsupervised because we try to 
discover structure, in this case, distinct clusters of PWA, based on discourse characteristics 
of connected speech. A practical issue in the application of clustering analysis is deciding 
how many clusters, K, to look for in the data. We used the elbow plot to identify a value of 
K = k, where the change in total within-cluster variation is small relative to the value for k − 
1 or k + 1 clusters. If a single value of K does not stand out from the plot, i.e., the “elbow” is 
not sharp, we try several values to see if the interpretation of the identified groups 
changes very much and look for the choice of K with the most useful, interpretable 
solution.

After assigning labels to identify the clusters of PWA identified by K-means clustering, 
we next used a set of supervised statistical methods based on classification trees to 
investigate the key characteristics of spoken discourse that best characterize the new 
groupings. The use of a single classification tree is highly sensitive to the set of observa
tions used to create that tree. Although K-means clustering does a good job of distin
guishing clinical profiles, it does not specify which discourse measures work best for 
accurate classification. To address this, we applied random forest methods to create 
a prediction model that can be used in actual clinical practice based on a connected 
speech sample. Random forest methods involve a computationally intensive approach for 
generating multiple classification trees using subsets of the predictor variables (e.g., 
features of connected speech) from subsamples of the data set to assign each PWA to 
one of the K-means clusters. Random forest analysis itself would not be used in clinical 
practice. Rather, it is a representative classification tree selected from the random forest 
that could guide clinical research and practice.
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Specifically, random forest constructs a collection of classification trees, say B trees, 
based on randomly selected sets of observations and predictor variables selected 
from the data set. Each tree assigns a PWA to a label, i.e., a cluster group. Across the 
B trees we determine the most prevalent label assigned to a PWA and choose that 
label as the predicted K-means cluster group for that PWA (Breiman, 2001; James 
et al., 2013). A feature of the random forest approach, called “feature bagging”, is that 
instead of using all the discourse variables in developing each classification tree, 
a randomly selected subset of variables is used for each tree, which has the effect 
of making each individual tree more unique and reduces correlation between trees, 
improving the random forest’s overall performance (Breiman, 2001). An added advan
tage of using feature bagging is that it can be used to help identify the set of 
discourse variables that is the most informative in contributing to the classification 
of PWA into clusters.

To assess how well the predictions from the random forest model did, we compared 
the classifications of a subset of the PWA who were held out of the training sample that 
created the random forest prediction model and cross-classified their predicted labels to 
their assigned labels based on K-means clustering. Here, we were looking for the degree- 
of-agreement between the two. Finally, to investigate further what we could learn about 
the new classification system based on the discourse characteristics of connected speech, 
we cross-classified the PWA using the traditional aphasia classifications versus the new 
enhanced system to better understand where there was agreement and, more impor
tantly, where the two schema differed. Statistical analyses were done using R, ver
sion 3.4.1.

The Data. The AphasiaBank database included a total of 306 PWA. This study consisted 
of the 168 participants with complete observations (for all 221 variables) at the time of this 
study. Table 2 provides demographic characteristics of the PWA sample.

Table 2. Participants’ (N = 168) Characteristics.
Variable Mean (SD) or Frequency

Age 62 (12) years
Sex 96 males, 72 females
Handedness 149 right, 14 left, 5 ambidextrous
Education 15.3 (2.9) years
Race 141 White, 18 African American, 

5 Hispanic/Latino, 2 Asian, 1 Native Hawaiian/Pacific Islander, 1 Mixed
Time post-onset 5.4 (5.0) years
Aphasia etiology 164 stroke, 4 other
WAB-R type 61 Anomic, 35 Broca, 

32 Conduction, 11 Wernicke, 
8 Transcortical motor, 21 not aphasic*

Note: WAB-R – Western Aphasia Battery-Revised (Kertesz, 2007) 
* “not aphasic” refers to participants whose WAB-R Aphasia Quotient was above the test battery’s “normal 

or nonaphasic” cutoff of 93.8 but who still considered themselves (and were considered by their clinicians) 
to be aphasic.
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Figure 2. % of closed class words on Cinderella task by aphasia type.

Figure 1. Total number of words on free speech discourse tasks by aphasia type. Note: In this box plot, 
the bottoms and tops of the boxes represent the first and third quartiles, respectively, of the 
distribution (number of words on free speech discourse tasks). The horizontal line inside each box 
represents the median. The vertical lines extending above and below the boxes represent the 
minimum and maximum data points, excluding outliers which are represented by dots and signify 
data points outside 99.3% of the distribution.
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Results

Exploratory data analysis

First, we used exploratory data analysis techniques to examine the performance on the 
discourse variables for each traditional aphasia type. Box plots in Figures 1 and 2 provide 
examples of these results. Figure 1 shows the total number of words produced on the free 
speech tasks, and Figure 2 shows the percent of closed-class words produced on the 
Cinderella storytelling task. Both figures clearly show that traditional aphasia types have 
limited value in discriminating performance on each of these discourse variables alone. 
That is, knowing that an individual produced approximately 550 words on the free speech 
task, might indicate that the individual probably did not have Broca’s aphasia, but it would 
not help discriminate among the four fluent types of aphasia. Likewise, knowing that, on 
average, more than half of the words used in the Cinderella story were closed-class words 
might tell you the same thing. These results indicate, unsurprisingly, that there is a great 
overlap across aphasia types when looking at single dimensions of discourse.

Figure 3. Total within-cluster sum of squares for different K values in K-means.

Table 3. Number of individuals per cluster by 
K-means.

K-means Cluster Count Fraction

a 20 0.12
b 20 0.12
c 10 0.06
d 28 0.17
e 35 0.21
f 27 0.16
g 29 0.17
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The next steps involved using K-means clustering, an unsupervised machine learning 
approach, to best identify coherent groups of PWA using our total collection of discourse 
variables. Two supplemental data tables can be accessed at supplement tables with 
means and standard deviations for the formal and informal testing (S-Table 1) and the 
discourse data across all four genres (S-Table 2).

Identifying new aphasia clusters based on K-means

To discover new clusters based on language behaviors and patterns, we applied the 
K-means algorithm to the language discourse data set. We first applied the elbow method 
to identify the optimal K value (number of clusters) for the K-means algorithm. Figure 3, 
the elbow plot, shows the total within-cluster sum of squares for different values of K. 
Based on the plot, we picked K = 7 for the number of clusters, as this value provides a low 
within-cluster sum of squares, meaning that the variability of participants within each 
cluster would be quite low and differ minimally from K = 6 or K = 8. We explore the 
sensitivity of our results in choosing K = 7 versus 6 or 8 later.

We applied the K-means algorithm with K = 7, and labeled these 7 clusters 
alphabetically from a to g in arbitrary order. Table 3 displays the number of parti
cipants who were categorized into each of the new aphasia clusters. Clusters e and 
c are the largest and smallest, respectively; the other clusters consist of roughly 
similar numbers of PWA.

The first author (DF) reviewed video files of the PWA participants to describe the 
general perceptual characteristics of the connected speech in the seven new clusters 
(a–g). Table 4 displays the key characteristics for these seven clusters. The a– 
g clusters revealed coherent and distinctive connected speech groupings based 
primarily on characteristics of amount of output (total words, total utterances) and 
fluency. In this case, fluency meant that the connected speech had some normal 
syntactic sentence structure and melodic line. The other distinguishing characteristics 
involved the relative frequency of behaviors, such as word errors (e.g., paraphasias, 
neologisms), repetitions, revisions, fillers, and sound fragments (incomplete word 
attempts), all of which were present to some extent in all samples and all of which 
can be considered aspects of fluency (Gordon, 1998). Clusters a and f were typical of 
non-fluent aphasia, with a being more severe and containing mostly single words 
with no complete sentences. The samples in cluster a had some word errors and 
jargon as well as some fillers and fragments; the samples in cluster f also had word 

Table 4. Characteristics of aphasia K-means clusters.

K-means Cluster Fluency
Amount of output 

(length and complexity)

a Non-fluent Very limited 
Mostly single words

b Fluent Mostly normal
c Fluent Lengthy output
d Fluent Reasonable
e Fluent Reasonable
f Non-fluent Limited
g Non-fluent/fluent Somewhat limited 

Slow with pauses
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errors, fillers, fragments. The characteristics of cluster g had elements of both non- 
fluent and fluent aphasia with some more syntactic sentence structure but slow 
production and notable pausing as well as word errors, repetitions, revisions, fillers, 
and fragments. Within the fluent clusters, d and e had less output than b and c. 
Utterances in cluster d samples were less grammatically complex than those in 
cluster e, and they contained more word errors, repetitions, revisions, fillers, and 
fragments. Cluster c samples had more word errors, repetitions, revisions, fillers, and 
fragments than cluster b, which were the samples that showed the least overall 
impairment. Based on this expert assessment, we concluded that these clusters of 
PWA developed by the K-means algorithm were able to differentiate and thereby 
characterize basic underlying language patterns in individuals with aphasia. These 
will be discussed more in the Discussion section.

The enhanced classification system

With the new clusters of PWA identified based on K-means (with K = 7, as described in 
Table 3), we tagged the participants with their associated K-means cluster label (a–g) and 
used random forest methods, a supervised machine learning approach, to develop 
a prediction model based on classification trees to assign new PWA to groups based on 
their language output.

The importance of each variable in the new classification prediction model derived 
from the random forest algorithm is displayed in Figure 4. The prefixes on each variable in 
Figure 4 correspond to the specific discourse genre: F = free speech narratives, P = picture 
description, C = Cinderella storytelling. However, more important is the category of the 

Figure 4. Average variable importance for enhanced aphasia classification by random forest (k = 6, 7, 
and 8). Note: (F) = free speech narratives, (C) = Cinderella storytelling, (P) = picture descriptions, 
MLU = mean length of utterance, rets = retracings, reps = repetitions
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variable (refer to Table 1 for the full list of variables). The figure illustrates that the amount 
of output (measured by total number of tokens, total number of utterances, etc.) and the 
lexical content of the output (number of open class and closed-class words) were among 
the most important categories of discourse variables used in the model to assign subjects 
to a K-means cluster category.

A representative classification tree from cross-validation that assigns participants into 
one of the a–g classes is displayed in Figure 5. The classification tree provides a simple and 
mathematically sound model for assigning PWA to groups based on two variables: total 
number of words in the free speech tasks and total number of closed-class words in the 
Cinderella storytelling. Starting at the top of the figure, the first split is based on the free 
speech task: less than 309, yes or no. Then, if a PWA’s total word count on the free speech 
tasks is less than 309 and even less than 110 in the free speech task, that PWA would be 
assigned to the a cluster. If a PWA’s total word count on the free speech tasks is greater 
than 309 but less than 798, and the number of closed-class words is greater than 139, that 
PWA would be in the e cluster.

Given that only two variables, total number of tokens from the free speech task and the 
total number of closed-class words from the Cinderella task, were used to create the splits 
within the tree classifier, we re-examined the results from the feature selection from the 
random forest analysis. As Figure 4 shows, the two variables from the classification tree 
(Figure 5) are the first and fourth most important variables selected by random forest. To 
assess the robustness of our results, we also redid the analyses with K = 6 and K = 8 
clusters and found results similar to the model presented here using K = 7 clusters, 
meaning in each case two types of variables on average were identified using random 
forest, one being total words or utterances and the other, the number of closed-class 
words. Thus, we find that the features that predict the K-means clusters are the same 
whether K = 6, 7, or 8.

We also validated the accuracy of the tree by comparing the classification tree group
ing results from random forest analysis to the K-means clustering results for the testing 
data set, the training data set, and the full data set. Our tree classifier achieved high 
accuracy (agreement = 0.86) on the testing data set, the training data set (agree
ment = 0.92), and the entire data set (agreement = 0.91). This provides further confidence 

Figure 5. Best decision tree from 10-fold cross validation.
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that the tree serves as a simple yet robust algorithm to identify clusters of PWA based on 
measures defined by the K-means algorithm. The confusion matrix in Table 5 provides 
a cross-classification of the a–g groups based on the prediction model using the tree 
classifier based on the two features (rows) compared to the K-means cluster assignments 
(columns) for all PWA in the full data set. For example, there were 34 PWA assigned to 
cluster e by the unsupervised K-means algorithm who were also placed into group e using 
the prediction model based on the tree classifier’s measures (total number of words on 
free speech tasks and total number of closed-class words on Cinderella task); one 
individual from the K-means e cluster was placed into group d by the tree classifier. The 
values along the main diagonal of Table 5 show the strong agreement between the two 
classification methods. There are relatively few cases of the main diagonal that would 
indicate a lack of agreement between the two classification methods. With only a few 
exceptions (n = 13), the participants were placed in the same groups with both classifiers. 
Of the 13 exceptions, 11 K-means predictions were in neighboring tree groupings (e.g., 
e instead of d, g instead of f, f instead of a and g). For example, two individuals in the 
K-means d cluster were classified in the e tree group because the number of closed-class 
words in their Cinderella stories was 134 and 137, just below the 139 word cutoff, which 
would have placed them in the d group, suggesting that these few examples of lack of 
agreement were minor.

Comparison of original and enhanced classification systems

We were also interested in comparing and contrasting the new classification system with 
the traditional WAB-R classification system. Table 6 illustrates the concordance between 
WAB-R aphasia classification and the a-g classes from the predictions from the best 

Table 5. Confusion matrix of K-means predictions (columns) and tree classification system 
(rows).

K-means

Tree a b c d e f g

a 20 0 0 0 0 2 0
b 0 20 0 0 0 0 0
c 0 0 10 0 0 0 0
d 0 0 0 24 1 0 1
e 0 0 0 4 34 0 1
f 0 0 0 0 0 24 3
g 0 0 0 0 0 1 24

Table 6. Confusion matrix of traditional WAB-R aphasia types and tree classification system.
Tree Classifications

WAB-R Types a b c d e f g

Anomic 4 8 3 11 20 6 9
Broca’s 17 0 0 3 2 11 2
Conduction 0 5 3 8 7 2 7
Not aphasic 0 7 3 3 4 0 4
TCM 1 0 0 0 0 6 1
Wernicke’s 0 0 1 1 6 2 2

Key: TCM = Transcortical motor
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classification tree. Interestingly, many of the WAB-defined aphasia types span multiple 
a-g groups under the enhanced classification system. For example, the 35 PWA identified 
by WAB-R classification as Broca’s are located in five of the tree classification clusters, 
though mostly concentrated in clusters a (n = 17) and f (n = 11). These results will be 
discussed in more depth in the next section.

Discussion

In this study, we explored an enhanced aphasia classification system based on spoken 
language samples and some repetition and naming test scores from individuals with 
aphasia. Seven distinct groups were identified by a K-means algorithm with the optimal 
K-value suggested by the elbow method. Using the new groupings suggested by K-means 
clustering as the response variable, we discovered a classification scheme using the 
random forest algorithm to classify individuals with aphasia. As the tree classifier was 
capable of achieving high accuracy with the testing set in predicting participants’ new 
aphasia groupings, we are confident that the tree is robust and are encouraged that this 
model will help clinicians and researchers identify salient characteristics that better 
characterize the language output of PWA.

Aphasia clusters

The clustering had a surprisingly simple structure, as only two measures created splits 
within the tree classifier: total number of words in the free speech (personal narrative) 
tasks and number of closed-class words from the Cinderella storytelling task. These results 
support both intuitive and empirically demonstrated factors that are important in evalu
ating language ability. Total number of words represents the amount of speech output 
the person generates, a measure of productivity. Amount of closed-class words (e.g., 
pronouns, determiners, conjunctions, prepositions), concerns the type of words in the 
output and can be viewed as a crude measure of grammaticality. In a study of 27 common 
auditory-perceptual features of connected speech in aphasia, factor analysis showed that 
logopenia (paucity of speech) and agrammatism were two of the four underlying factors 
accounting for 79% of the variance in speech samples (Casilio et al., 2019). Interestingly, 
proportion of closed-class words was one of two measures used to assess grammatical 
deficits in a recent article mapping articulatory and grammatical aspect of fluency deficits 
in aphasia and was significantly correlated with aphasia severity but not correlated with 
consistent lesion locations (Mirman et al., 2019). Both measures, total words and propor
tion of closed-class words are elements of the QPA (Saffran et al., 1989) and NNLA 
(Thompson et al., 1995), two systematic approaches to measuring syntactic ability in 
connected speech. The fact that number of words and number of closed-class words 
were key elements in the clusters of discourse from a large group of PWA demonstrates 
that the ability to produce more speech output and form utterances with more gramma
tical words serves to differentiate and separate PWAs into different groups. It would be 
interesting to investigate these new groups with analyses based on a multi-level dis
course-processing model, as Sherratt (2007) did with discourse from non-brain-damaged 
males. She analysed seven areas based on the model (e.g., relevance, discourse grammar, 
fluency) using 23 specific outcome measures. One of the findings that bears on the results 
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of this study, was that longer samples (more output) were associated with an increased 
proportion of cohesive ties (especially conjunctions and lexical ties) and syntactic 
complexity.

The variable importance plot (Figure 4) showed that in addition to the productivity 
measures (total words, total utterances) and word class frequencies (closed class, open 
class), the next most important measures involved retracings (revisions), measured as 
both the raw total number of retracings and the frequency of utterances that included any 
number of retracings. Retracings are a very telling feature of connected speech in aphasia. 
As a rule, individuals with Wernicke’s type fluent aphasia are truly fluent, in the sense that 
they produce speech in an uninterrupted flow with infrequent repetitions and revisions, 
sound fragments, fillers, word-finding pauses, and hesitations (Pallickal, 2020). The con
nected speech of individuals with conduction type fluent aphasia, on the other hand, 
typically contains multiple attempts at self-correction. In fact, conduit d’approche, suc
cessive attempts at a target word, is a classic feature of conduction aphasia (Bartha & 
Benke, 2003). Other PWA also exhibit revisions that can be revealing in a number of ways. 
They may indicate an ability to self-monitor in real time, demonstrating the speaker’s 
knowledge of the target word, awareness of the error, and desire to repair it. In less fluent 
contexts, they may indicate a coexisting apraxia of speech, a motor speech disorder that 
often co-occurs with aphasia and manifests with inconsistent speech sound errors, 
articulatory groping, restarts, and attempts at revisions (Haley et al., 2021; Strand et al., 
2014; Van der Merwe, 2007). As seen in the excerpts from CHAT files in Figure 6, retracings 
(marked with [//]) may occur following paraphasias and reformulations due to a host of 
factors, but they commonly result from problems finding and producing words. Other 
CHAT markings in these utterances include: repetitions marked with [/]; target words in 
square brackets with a colon next to error productions; phonetic transcriptions of error 
productions tagged with @u; sound fragments preceded by &+ symbols; and (.) for a short 
pause. Along with the quantity of output and number of closed-class words, retracings are 
easy to identify and helpful in discriminating among speakers with aphasia. Therapeutic 
goals may include ways to modify the retracings to work toward maximizing commu
nication success but also minimizing the frequency of these behaviors.

Aphasia cluster characterizations and comparison with traditional aphasia types

Along with amount of output and fluency, the subjective features that were most salient 
in describing the perceptual characteristics of the clusters were repetitions, revisions, 
paraphasias, fillers, and sound fragments. These features correspond to results of the 
random forest analysis discussed earlier. Interestingly, they also correspond to factors 
that accounted for 79% of the variability in the Casilio et al. (2019) study of auditory- 
perceptual speech ratings of connected speech in aphasia: logopenia (paucity of out
put), agrammatism, paraphasia, and motor speech (e.g., pauses, reduced rate, halting, 
and effortful speech). The results of the K-means clustering analysis in the current study 
revealed two distinctly non-fluent groups, with halting production, mostly single words 
or short phrases. Participants in group a had language output typical of individuals with 
severe Broca’s aphasia, and those in group f resembled speakers with more traditional, 
less severe, chronic Broca’s aphasia. Cluster g straddled the fluency fence with some
what limited output but more propositional utterances with more grammatical 
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elements but also grammatical errors, pronoun substitutions, paraphasias, noticeable 
pauses, repetitions, and revisions. The other four groups were distinctly fluent, meaning 
the connected speech had some normal syntactic sentence structure and melodic line. 
The b cluster was the one that most resembled normal discourse output, and those 
samples had fewer total words and fewer of the other behaviors (e.g., word errors, 
repetitions, revisions, filler, and fragments) than cluster c. Cluster c had the lengthiest 

Figure 6. Examples of retracing in CHAT transcripts.
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output along with some word errors, repetitions, revisions, fillers, and fragments. As we 
know from discourse efficiency measures, this type of lengthy output can signify more 
word finding problems, circumlocution, semantic jargon, paragrammatism, and irrele
vant or empty speech.

Comparing the clusters to the WAB-R aphasia types is interesting but should be done 
with caution. The intention here is not to recommend new aphasia subtypes or classifica
tion schemes, but to present the idea of coherent clusters of PWA that are based on 
connected speech data using unsupervised statistical algorithms. In addition to fluency in 
connected speech, the WAB-R determinations are based on subtests of auditory compre
hension, repetition, and naming. Thus, we expect some dispersion of WAB-R aphasia 
types across the seven clusters that resulted from the K-means procedure, as seen in Table 
6. Individuals with Wernicke’s aphasia and transcortical motor aphasia were predomi
nantly in single clusters (e and f, respectively), while participants with Broca’s aphasia were 
mostly distributed across two clusters, where cluster a resembled severe Broca’s aphasia 
and f resembled a more traditional, less severe, chronic presentation. Many articles over 
the years have discussed the multifaceted nature of Broca’s aphasia, debating its unified 
syndrome status as well as its associated lesion location(s) (Caramazza et al., 2001; Drai & 
Grodzinsky, 2006; Fridriksson et al., 2015).

The dispersion was most marked for the anomic aphasia group. A study by John et al. 
(2017) compared WAB-R types with clinical impressions and found that only two of the 14 
participants with anomic aphasia according to the WAB-R were judged to have anomic 
aphasia; 10 were judged to have Broca’s and two to have Wernicke’s aphasia. Though 
other groups also showed discrepancies in that study, the anomic group showed the 
most, including the crossover from what is considered to be a fluent aphasia into a non- 
fluent aphasia type. Casilio et al. (2019) commented that the auditory-perceptual factor 
loadings for individuals with the same type of aphasia (e.g., Broca’s or Wernicke’s) showed 
considerable diversity. Conversely, participants with similar auditory-perceptual profiles 
had different WAB-R aphasia types. Axer, Jantzen, Berks (2000) commented that their 
neural network classifier using spontaneous speech (six spontaneous speech subtests of 
the AAT) was inadequate at classifying anomic aphasia, which they hypothesized was not 
as homogenous a group as the other aphasia syndromes. Notably, the PWA with conduc
tion aphasia and those who scored above the WAB-R aphasia cutoff were also dispersed 
across the clusters, though the PWA classified as “not aphasic” by the WAB did not fall into 
either of the non-fluent clusters.

A primary explanation for classification discrepancies with the WAB can be traced to 
the gating function of the fluency rating scale in the spontaneous speech section (Trupe, 
1984). This portion of the test contains six conversational questions and one picture 
description. Fluency rating scores of 5 and above divide the fluent (anomic, Wernicke’s, 
conduction, or transcortical sensory) and non-fluent (4 and below) aphasia types (global, 
Broca’s, transcortical motor, or isolation). These ratings are based on a limited amount of 
connected speech assessment, much of which does not even require propositional 
phrases. In fact, all six of the conversational questions (e.g., How are you today, Have 
you been here before, What is your first and last name) could be appropriately answered 
without propositional phrases or sentences. Thus, the single picture description could be 
the basis for the fluency rating which distinguishes the fluent from non-fluent aphasia 
types. Someone with a fluent aphasia who has word finding problems and limited output 
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in describing the picture could be classified as having Broca’s or transcortical motor 
aphasia, depending on the other subtest scores. Likewise, someone with a non-fluent 
Broca’s aphasia who managed to produce some grammatical words and at least two 
propositional sentences could be classified as having conduction, anomic, or Wernicke’s 
aphasia, depending on the other subtest scores.

The WAB was designed to be a comprehensive assessment to determine presence, 
severity, and type of aphasia based on linguistic skills in spontaneous speech, auditory 
comprehension, naming, and repetition. As such, the WAB-based classifications may lack 
the ability to identify the underlying differences in certain language output skills and 
establish distinct aphasia groups based on those behaviors. Our results provide another 
opportunity to raise some caution about strict adherence to these aphasia types for 
clinical and research purposes, specifically when the focus is on connected speech.

Discourse genres

Of the four discourse genres included in this analysis, the Cinderella story and free speech 
genres were the most useful in identifying and distinguishing clusters. They represent 
narrative and everyday discourse, the two main genres that clinicians and researchers 
typically elicit (Pritchard et al., 2018). The procedural discourse genre was represented by 
only one simple task, the sandwich task, and therefore had much less quantity and 
complexity of output than any of the others. The picture description tasks included 
three separate picture stimuli and prompts. These tasks can also be considered narratives 
or everyday discourse, but they are more expository in nature, similar to describing 
situations or events. Though two are sequenced and one is not, these expository tasks 
(the single “Cat Rescue” task and the sequenced “Broken Window” task) were shown to 
cluster together in analyses of discourse microstructure (Stark et al., 2021). All these 
stimuli are black-and-white drawings, perhaps not as engaging or relevant to the parti
cipants. The free speech tasks, on the other hand, included multiple prompts about the 
participants’ speech, their stroke, their recovery, and an important event in their lives. It is 
conducted as a structured conversation, has more personal relevance, and is more like 
a normal, familiar conversational interaction than any of the other tasks. The Cinderella 
storytelling task is the second most frequently reported language sampling technique 
(the first being the Cookie Theft picture) used to elicit narratives in aphasia (Bryant et al., 
2016). It has been shown to be useful in generating rich language samples that involve 
some orientation, precipitating action, and resolution (Armstrong, 2000). Many articles 
attest to its use in identifying language characteristics of fluent and non-fluent partici
pants, highlighting recovery patterns, and showing changes following treatment (Bird & 
Franklin, 1996; DeDe & Salis, 2020; S. G. H. Dalton & Richardson, 2019; Jacobs, 2001; Stark, 
2010; Thompson et al., 2003; Webster et al., 2007). In a large study of main concept 
production in five discourse tasks, the Cinderella task had the greatest number of large 
effect sizes indicating performance differences among subtypes of PWA (Dalton & 
Richardson, 2019). Results from our study – having included a large number of discourse 
measures from a range of discourse tasks as well as naming and repetition test scores – 
demonstrate that the quantity of grammatical words used in the Cinderella task and the 
total number of words produced in the personal narratives are uniquely valuable in 
distinguishing and identifying aphasic discourse.
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Conclusions

The classification system developed here is capable of identifying underlying differences 
in individuals within the same WAB-defined aphasia types, and grouping them into new 
clusters. This discourse-based clustering system mapped the participants into different 
clusters based on a remarkably small number of discourse measures. Interestingly, test 
scores were not useful in distinguishing groups. Given the two related facts that 100% of 
SLPs elicit spoken discourse when analyzing PWA (Bryant et al., 2017) and that the aphasia 
literature reports over 500 different measures to analyze connected speech in aphasia 
(Bryant et al., 2016), these results answer the call for a more systematic approach to 
discourse measurement and analysis in aphasia studies (Dietz & Boyle, 2018; Kintz & 
Wright, 2018; Stark et al., 2021). Understandably, the clusters presented here relate to 
specific tasks administered as part of a specific discourse protocol. Thus, the decision tree 
divisions, for example, are not universally prescriptive. Nor are the perceptual descriptions 
of the clusters intended to be a unique or novel classification scheme. The analyses done 
here also involved transcription, which is time-consuming and not always conducive in 
clinical settings. Using the CLAN editor and automated CLAN analyses makes the entire 
process much more efficient, but still a potential barrier for busy clinicians. The intention 
was to illustrate how the use of unsupervised statistical techniques can shed light on 
salient targets to guide efforts to establish the most effective measures for assessment, 
treatment, and research of connected speech in aphasia.

Connected speech is the most functional and ecologically valid level of expressive 
language to assess (Craig et al., 1993; Gordon, 2020; Prins & Bastiaanse, 2004) but also 
challenging to quantify and analyze. We believe that the enhanced clustering scheme is 
meaningful both in research and clinical contexts. Machine learning approaches have 
begun to be used in other areas of discourse impairments such as Alzheimer’s disease 
(Fraser et al., 2016), mild cognitive impairment (Lundholm Fors et al., 2018), and semantic 
dementia (Garrard et al., 2014). Our study revealed a robust system to classify multivariate 
groupings through the use of unsupervised machine learning with a large discourse data 
set from a large group of individuals with aphasia. The new system, based on the 
language patterns of individuals with aphasia, is capable of differentiating PWA based 
on clinically relevant and ecologically valid behaviors. Clinicians could combine the 
traditional aphasia-type classification system with the new tree classifier to gain insights 
about the associated characteristics with each aphasia type, and plan for more targeted 
treatment and outcome goals. Amounts of output, closed-class function words, revisions, 
repetitions, fillers, sound fragments, and word errors are straightforward and salient 
characteristics that can be identified and measured for assessment and treatment pur
poses. It can be argued that these are all essential aspects of what is perceived as fluency 
in connected speech. Similarly, researchers could further investigate the connections 
between the comprehensive traditional aphasia typing and the clusters revealed by this 
analysis of discourse. In summary, we are confident that our research provides interesting 
and practical information regarding language patterns of individuals with aphasia that 
can be applied to both clinical treatment and research contexts.
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Future work

There are a number of ways for future work to improve on and extend this study. The final 
data set, using participants who had complete data, consisted of 168 participants and 221 
variables. Though we have applied a train-test split and used cross validation to prevent 
overfitting in this paper, we hope that future research could (i) replicate the K-means and 
random forest procedure to verify whether similar results could be obtained indepen
dently, and (ii) apply our decision tree algorithm to classify new PWA, i.e., to assess the out- 
of-sample performance of the algorithm. Secondly, we used K-means clustering, which is 
a well-known clustering algorithm to perform the clustering task. Some disadvantages for 
K-means algorithm are that the algorithm requires pre-determining the optimal K-value, 
and the clustering results do depend on the initial random choice of cluster centers. Hence, 
future research can be dedicated to applying more consistent clustering methods such as 
density-based clustering or mean-shift clustering to investigate the underlying groupings 
of PWA based on language pattern. Interpretation of the model (Table 4) was based on 
subjective, qualitative auditory-perceptual judgments of one individual not blinded to the 
group assignments. Here, the goal was to learn about the application of these procedures 
to discourse data and present the results for continued scientific inquiry. Future research in 
this area should design more sophisticated validation procedures and include measures of 
rater reliability for perceptual judgments. In summary, while at this point, the tree structure 
in Figure 5 is likely the most easily interpretable and usable model available, it is possible 
that better classification models can come when we have a greater sample size to work 
with and include other variables in the analysis. Finally, relevant to the tree classifier, the 
results are raw frequencies of discourse variables specific to the tasks used in the 
AphasiaBank standard discourse protocol. Future studies should include other discourse 
variables and other tasks to test both the reliability and generalizability of these results. It 
would also be interesting to use this or some other unsupervised machine modeling 
approach to relate discourse variables to lesion-symptom mapping to further understand 
these important brain behavior relationships.

Note

1. Participant-related data are password protected and restricted to members of the 
AphasiaBank consortium group. Licensed SLPs, educators, and researchers who would like 
access can send an email request to Brian MacWhinney (macw@cmu.edu) with contact 
information, affiliation, and a brief general statement about how they envision using the 
resources.
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