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ABSTRACT The ADReSS-M Signal Processing Grand Challenge was held at the 2023 IEEE International
Conference on Acoustics, Speech and Signal Processing, ICASSP 2023. The challenge targeted difficult
automatic prediction problems of great societal and medical relevance, namely, the detection of Alzheimer’s
Dementia (AD) and the estimation of cognitive test scoress. Participants were invited to create models for
the assessment of cognitive function based on spontaneous speech data. Most of these models employed
signal processing and machine learning methods. The ADReSS-M challenge was designed to assess the
extent to which predictive models built based on speech in one language generalise to another language.
The language data compiled and made available for ADReSS-M comprised English, for model training,
and Greek, for model testing and validation. To the best of our knowledge no previous shared research
task investigated acoustic features of the speech signal or linguistic characteristics in the context of
multilingual AD detection. This paper describes the context of the ADReSS-M challenge, its data sets,
its predictive tasks, the evaluation methodology we employed, our baseline models and results, and the
top five submissions. The paper concludes with a summary discussion of the ADReSS-M results, and our
critical assessment of the future outlook in this field.

INDEX TERMS Biomedical signal processing, Medical conditions, Alzheimer’s disease, Human disease
biomarkers, Speech processing, Natural language processing, multilingual Alzheimer’s dementia detection.

I. INTRODUCTION

THERE has been a great increase in interest in sig-
nal processing and machine learning methods for the

detection of Alzheimer’s and other forms of dementia
through analysis of speech [1], [2]. While approaches to
assessing cognitive function, including dementia and mild
cognitive impairment detection, have increasingly employed
deep learning methods [3], other efforts focus on identifying
speech features that indicate cognitive changes [4].

Machine learning models of disease detection and prog-
nostic assessment have been proposed but often lack stan-
dardisation and common benchmarks against which the

different approaches and models could be compared [2].
This situation has improved somewhat in recent years with
the increasing availability of speech and language data sets
for dementia research [5]–[7], and the advent of machine
learning shared tasks (“grand challenges”) in Alzheimer’s
detection through spontaneous speech [8], [9]. While many
of the approaches proposed in the context of those challenges
produced high accuracy results based on the analysis of
spontaneous speech [10], [11], the data employed were
limited to American English data. Moreover, even where
classification and regression methods were based on acoustic,
as opposed to language-dependent features, it was unclear
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whether such acoustic analysis approaches would generalise
across languages [12]. In order to investigate this question,
we organised the ADReSS-M Challenge at ICASSP 2023,
which targeted dementia detection across two languages [13].

Alzheimer’s Dementia (AD) is a category of neurode-
generative syndromes that entails a long-term and usually
gradual decrease of cognitive functioning. To diagnose and
assess disease progression as well as cognitive decline,
biomarkers are often employed. A biomarker (or biological
marker) is, in the U.S. Food and Drug Administration
(FDA) definition, “a defined characteristic that is measured
as an indicator of normal biological processes, pathogenic
processes or responses to an exposure or intervention” [14].
Unfortunately, most existing biomarkers for AD are either
costly (neuroimaging methods such as positron emission
tomography, PET, or magnetic resonance imaging, MRI) or
invasive (such as analytes extracted from cerebrospinal fluid,
which involve a lumbar puncture procedure). Alternative
assessment methods, such as standardised cognitive tests,
often suffer from ceiling effects [15], and are subject to daily
fluctuations that affect cognition and executive function.

As cost-effective and accurate biomarkers of neurode-
generation have been sought in the field of dementia re-
search, speech-based “digital biomarkers” have emerged
as a promising possibility. Speech seems particularly well
suited for this task, as speech and language convey much
information about one’s cognitive function and can be col-
lected in natural settings and over time thus overcoming the
daily fluctuations caused by fatigue, low mood, short-term
illnesses and text anxiety, which tend to affect the reliability
of cognitive test performance. However, as noted, the general
applicability of speech-based digital biomarkers depends on
whether they can be deployed in different linguistic contexts.
This question has been under-researched in this emerging
field. The “ADReSS-M: Multilingual Alzheimer’s Dementia
Recognition through Spontaneous Speech” challenge sought
to enable the investigation of this issue by defining pre-
diction tasks whereby participants trained their models on
English speech data and assessed those models’ perfor-
mance on spoken Greek data. One should note, however,
that in contrast to traditional biomarkers, which have been
treated as individual features in risk models [16], the speech
biomarkers investigated in this challenge are better seen
as composite biomarkers, consisting of the combination of
multiple metrics into a single multivariate model [17]. The
models submitted to the challenge investigated acoustic and
linguistic features of the speech signal whose predictive
power were partially preserved across these languages.

ADReSS-M provided a platform for contributions to
the application of signal processing and machine learning
methods for two tasks: multilingual Alzheimer’s dementia
detection and cognitive score test prediction. The challenge
also stimulated the discussion of machine learning archi-
tectures, novel signal processing features, feature selection
and extraction methods, and other topics of interest to the

growing community of researchers engaged in investigating
the connections between speech and dementia. A total of
24 research teams from 14 different countries (Belgium,
Canada, China, Denmark, India, Finland, Germany, Greece,
Poland, Spain, South Korea, Sweden, UK and USA) took
part in the challenge, with the majority (17) creating models
and submitting results for both tasks.

The approaches adopted by the various research groups
that entered the challenge were quite diverse. Feature ex-
traction approaches ranged from acoustic feature extraction
using standard feature sets such as eGeMAPS [18], to
transcript generation through automatic speech recognition
followed by linguistic feature extraction through pre-trained
multilingual word embedding models, to task-specific feature
engineering (representing speech intelligibility and different
pause features, for instance), and combinations of these
approaches, sometimes followed by further dimensionality
reduction methods. Machine learning approaches included
transfer learning using deep learning architectures, conven-
tional machine learning algorithms such as support vector
machines, logistic regression, random forests, gradient boost-
ing, and late fusion methods involving combinations of these
approaches. Feature fusion combining acoustic, paralinguis-
tic and linguistic features was also often employed.

In what follows, we describe the ADReSS-M challenge’s
modelling tasks, along with their evaluation metrics and
ranking procedure, present the data sets in detail, describe
our baseline models for the task, present the challenge’s
results, including a ranking table with the five top-scoring
submissions along with brief descriptions of the methods
and approaches used by each of these submissions, present a
summary of their contributions, and discuss future prospects
for this area.

II. Related work
Early research on language as an indicator of cognitive
decline tended to favour the analysis of characteristics such
as information content, comprehension of complexity, and
semantic fluency as predictors of disease progression [19].
However, content-free features have also been explored in
early research, such as [20], which used natural language
processing (NLP) and automatic speech recognition (ASR)
to generate basic paralinguistic features (pause frequency and
duration), and analysed audio recordings of 74 neuropsy-
chological assessments to classify participants into groups
of people with mild cognitive impairment (MCI) or normal
cognition. Their best classifier obtained an area under the
receiver operating curve (AUC) of 86% by including a
combination of automated speech and language features
and cognitive tests scores. Spontaneous speech has also
been investigated, as in a study that used semi-structured
interviews from 9 healthy participants, 9 with AD, 9 with
frontotemporal dementia, 13 with semantic dementia, and 8
with progressive non-fluent aphasia, extracting 41 features
including speech rate, and the mean and standard deviation
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of the duration of pauses, vowels, and consonants to build a
classification model that achieved 88% accuracy [21]. In a
more recent study [22] graph-based features encoding turn-
taking patterns and speech rate [23] were extracted from
the Carolina Conversations Collection [24] of spontaneous
interviews of AD patients and healthy controls. This study
obtained 85% accuracy in distinguishing dialogues involving
an AD speaker from controls.

Other studies have combined linguistic and paralinguistic
features [25], [26], using signal processing and machine
learning to detect subtle acoustic signs of neurodegeneration
which may be imperceptible to human diagnosticians. While
some studies found that filled pauses (sounds like “hmmm”,
etc.) could not be reliably detected by human annotators, and
that detection improved by using ASR-generated transcrip-
tions [27], recent work has shown that filled pauses are good
predictors of cognitive difficulties [10]. The use of virtual
agents as a data collection strategy for AD detection has also
been investigated [28], reaching accuracy as high as 83%
on dialogue, eye-tracking and video data collected from 29
Japanese participants by a virtual character.

As regards data sets, one of the most widely used re-
sources is the Pitt Corpus [29]. Its picture description task
is one of the few available datasets that contain spontaneous
speech and clinical information. This dataset has been used
in several studies [26], [30], [31]. These studies used differ-
ent combinations of linguistic and acoustic features, ranging
from simple descriptive statistics to more complex feature
embedding representations for AD and MCI classification.

Although research on speech as an indicator of cognitive
function has increased in recent years, it remains difficult
to compare the different studies, even when restricted to the
same data sources. The ADReSS challenges [8], [9], [13]
were created to mitigate this problem. In these shared tasks,
participants used the same datasets, which were balanced
for age and sex and acoustically normalised. The various
approaches proposed to tackle the ADReSS challenges in-
cluded state-of-the-art deep learning and word embedding
methods, and focused mainly on linguistic features extracted
from the manually generated transcripts. The ADReSS [8]
winning team, for instance, leveraged audio recordings to
obtain information about pauses in speech, encoding them as
punctuation [32] into ensembles built from features extracted
from pre-trained language models (BERT [33] and ERNIE
[34]), and obtained 89.58% accuracy.

There are currently very few papers that report investi-
gations involving modelling of AD or MCI across different
languages, and to our knowledge no multilingual benchmark
data set or shared task in this area existed before ADReSS-
M. Previous research compared the use of monolingual
and multilingual pre-trained language models, and found
that multilingual models exhibited better performance across
English-Swedish data sets [35], and in English-Italian data
sets [36]. Similarly, Guo et al [37] employed cross-lingual
data augmentation based on pre-trained transformer models

to detect AD in English and Mandarin speakers, finding that
a contrastive learning, cross-lingual augmentation approach
outperformed monolingual augmentation. A study by Lind-
say et al [38] investigated multilingual modelling of AD in
an English-French corpus, attempting to systematically select
the most generalisable features. They found that features de-
rived from semantic processing were the most generalisable
features, while paralinguistic features had low generalisation
potential. Also regarding the use of language-independent
acoustic features, a recent study compared mono- and cross-
lingual features for MCI detection in English and Hungarian,
and found no significant difference in performance [39].

III. The ADReSS-M tasks
The ADReSS-M challenge consisted of two prediction tasks
to be attempted by the participants, namely:

1) a classification task (AD detection), where the models
aimed to distinguish speech of participants with normal
cognition (NC, or control condition) from speech of
participants with AD or mild cognitive impairment
(MCI), and

2) a cognitive test score prediction (regression) task,
where participants were asked to create models for
inferring the speaker’s Mini-Mental State Examination
(MMSE) score based on speech data.

AD and MCI classes were determined according to clinical
diagnosis criteria. In the case of probable AD diagnoses,
some were substantiated by neuropathologic examination
and others were confirmed by autopsy, as described by
Becker et al [29]. The MMSE is a short, psychometrically
sound screening tool for measuring cognitive functioning
(e.g., orientation, attention, memory, language, visuospatial
abilities) with a maximum score of 30 points [40].

Both tasks involved processing the raw spontaneous
speech signal, extraction of features, using whatever pre-
processing methods the participant wished to use, and cre-
ating the predictive models. No speech segmentation or
transcription were provided.

Participants could choose to do one or both tasks. They
were provided with a training set and, two weeks prior to the
paper submission deadline, were given access to test sets on
which they could test their models. Up to five sets of results
were allowed for scoring for each task per participant. All
attempts had to be submitted together.

As the broader scientific goal of ADReSS-M was to gain
insight into the nature of the relationship between speech and
cognitive function across different languages, we encouraged
participants to upload papers describing their approaches and
results to a pre-print repository such as arXiv or medRxiv
regardless of their ranking in the challenge, and asked them
to share their code through a publicly accessible repository,
if possible using a literate programming environment.
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IV. The data sets
The ADReSS-M data sets can be downloaded from Demen-
tiaBank at https://dementia.talkbank.org/ADReSS-M/, upon
agreement with the terms and conditions of data sharing
stipulated by that repository. The training data set con-
sists of spontaneous speech samples corresponding to audio
recordings of picture descriptions produced by cognitively
normal subjects and patients with a (probable) AD diagnosis,
who were asked to describe the Cookie Theft picture from
the Boston Diagnostic Aphasia Examination test [29]. The
participants were all native speakers of English, and were
asked to describe the picture shown in Figure 1.

FIGURE 1. Cookie Theft picture from the Boston Diagnostic Aphasia
Examination test, used to elicit connected speech for the English
language data set.

The test set consists of spontaneous (connected) speech
descriptions of a different picture, in Greek. The recordings
therefore were in one of these languages, and contained
speech produced by native speakers. Participants were ini-
tially allowed access only to the training data (in English)
and some sample Greek data (8 recordings) for development
purposes.

The Greek recordings assess participants’ verbal fluency
and mood using a picture which the participant describes
while looking at it. The assessor first shows the participant
a picture representing a lion lying with a cub in the desert
while eating, as shown in Figure 2. The assessor then asks
the participants to give a verbal description of the picture
in a few sentences. The original purpose of this task was to
evaluate the participant’s ability to generate coherent and de-
scriptive language while also gaining insights into their mood
as well as cognitive and emotional responses. By analysing
the language used to describe the picture, researchers can
assess the participant’s verbal fluency, vocabulary, syntax,
and overall linguistic capabilities. Additionally, the context
in which the data were collected is crucial to understanding
the significance of the task and its findings. This particular
task was conducted as part of a psychological and linguistic
research study carried out to examine language processing,

FIGURE 2. Image used in the Greek language picture description task
(photograph by Luca Galuzzi, converted to grayscale by S Luz with an
average HSI intensity saturation filter; licensed under CC BY-SA 2.5,
https://creativecommons.org/licenses/by-sa/2.5/deed.en)

cognitive abilities, emotional responses and mood-related
factors, and to explore potential connections between lan-
guage and cognitive states through this assessment.

The training data set was balanced with respect to age and
sex so as to eliminate potential confounding and bias. As we
employed a propensity score matching approach [41] we did
not need to adjust for education as this variable correlates
with age and sex, which suffice as an admissible adjustment
(see [42, pp 348-352]). Note, however, that the education
variable could still be used for predictive modelling. The
data set was checked for matching according to scores
defined in terms of the probability of an instance being
treated as AD given covariates age and sex estimated through
logistic regression, and matching instances were selected.
All standardised mean differences for the covariates were
below 0.1 and all standardised mean differences for squares
and two-way interactions between covariates were below
0.15, indicating adequate balance for those covariates. The
empirical quantile-quantile (eQQ) plots for the original and
balanced data sets [43] are shown in Figure 3. The matched
data eQQ plots show instances near the diagonal and clear
separation of the nominal variables, which indicate good
balance. The top left plot shows that the age distribution in
the full (non-matched) source data set had an age distribution
skewed towards older ages for the MCI/AD, showing some
level of balance only at the extremes (youngest and the oldest
of the old participants). The top right plot shows that the
matching procedure produced a well balanced set across all
quantiles. The bottom plots show the distributions of the sex
variable. As this is a binary variable, the data points are
concentrated at the extremities of the main diagonal, with
any unmatched data appearing as off diagonal dots (at the
other corners of the plot). As can be seen on the bottom-
left plot, the sex variable was already well balanced in the
source dataset, and the bottom-right plot shows that balance
was preserved by the matching process.
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FIGURE 3. eQQ plots for the original data set and corresponding
balanced training data set.

The mean age, MMSE, and the numbers of NC to AD
participants in the respective categories are shown in Table
1. The overall ratio of AD to NC for the training data is
22:23.

TABLE 1. Descriptive statistics for the ADReSS-M training set (English)

by diagnostic category (Dx) and sex. Abbreviations: n = number of partici-

pants, sd = standard deviation, MMSE = Mini-Mental State Examination.

Dx Sex n Age (sd) MMSE (sd)

NC Female 75 65.6 (6.22) 29.0 (1.29)
NC Male 40 67.7 (7.12) 28.9 (0.91)
AD Female 70 69.9 (6.40) 17.4 (5.10)
AD Male 40 68.4 (7.68) 18.7 (6.08)

The test set had similar statistical characteristics, but
slightly higher average ages and MMSE scores for each
category. The detailed composition of the test set is shown
in Table 2. The AD to NC ratio for the test set was 22:24.

TABLE 2. Descriptive statistics for the ADReSS-M test set (Greek) by

diagnostic category (Dx) and sex.

Dx Sex n Age (sd) MMSE (sd)

NC Female 18 66.5 (6.66) 29.0 (1.03)
NC Male 6 63.5 (9.38) 28.7 (1.63)
AD Female 17 72.5 (6.97) 20.5 (4.61)
AD Male 5 72.4 (8.08) 20.8 (4.66)

The training set audio recordings were distributed in
MPEG audio layer 2/3 format, with a sample rate of 44,100
Hz and bit rate of 128 kb/s. The test set audio was encoded
in 16-bit Signed Integer PCM format, with a sample rate of
22,050 Hz.

V. Evaluation metrics
The classification task is evaluated in terms of accuracy (A),
specificity (Sp), sensitivity (ρ) and F1 scores. These metrics
were computed according to equations (1)-(5).

A =
Tn + Tp
N

(1)

Sp =
Tn

Tn + Fp
(2)

F1 = 2
π × ρ
π + ρ

(3)

where N is the number of patients, Tp is the number of
true positives, Tn is the number of true negatives, Fp is the
number of false positives, Fn is the number of false nega-
tives. The F1 scores is the harmonic mean of sensitivity and
positive predictive value, or precision (noted π), computed
as shown in equations (4) and (5).

ρ =
Tp

Tp + Fn
(4)

π =
Tp

Tp + Fp
(5)

For the regression task (MMSE prediction), the metrics
used are the coefficient of determination and root mean
squared error (RMSE), as set out in equations (6) and (7),
respectively, where where ŷi is the predicted MMSE score,
yi is the patient’s actual MMSE score, and ȳ is the mean
score.

R2 = 1−
∑N

i=1(ŷi − yi)2∑N
i=1(ŷi − ȳ)2

(6)

RMSE =

√∑N
i=1(ŷi − yi)2

N
(7)

The ranking of submissions was based on accuracy scores
for the classification task (task 1), and on RMSE scores for
the MMSE score regression task (task 2). The top 5 models
comprised:

1) The two top performing (most accurate) teams for the
classification task

2) The two top performing (least RMSE) teams for the
MMSE regression task

3) The team that performed best on average for the two
tasks, chosen according to the formula set out in
equation (8), where Ti is the total score of team i and
T is the total number of teams in the challenge. If a
team chose not to submit results for a task, its score
for that task was set to 0.
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Ti =
Ai∑T
j Aj

+ 1− RMSEi∑T
j RMSEj

(8)

Ties were broken by averaging performance over all
attempts. These criteria were applied so that the rank resulted
in 5 different teams. Thus, if one team was selected as a top
team under one of the criteria, it would not be selected as a
top team in another. In such cases, the next top-performing
team would be selected. This was done in order to avoid a
situation in which the top-5 teams overall happened to have
done well at one task but had mediocre performance at the
other, while a team lower on the overall rank had superior
performance at the latter task.

VI. Baseline models
We created baseline models for each task to give the partic-
ipants an idea of what the use of standard signal processing
and machine learning methods could achieve for these tasks
on the provided data sets.

In creating these models, we first normalised the volume
of the audio files using FFMPEG’s [44] implementation
EBU R128 scanner filter [45]. A sliding window of 1 s,
with no overlap, was then applied to the audio recordings,
and eGeMAPS features were extracted over these frames.
The eGeMAPS feature set [18] is a basic set of acoustic
features designed to detect physiological changes in voice
production. The minimalistic acoustic parameter set consists
of eighteen low-level descriptors (LLD) arranged according
to parameter groups: pitch, jitter, formant frequency, shim-
mer, loudness, harmonics-to-noise ratio, spectral (balance)
parameters, harmonic difference, and energy/amplitude re-
lated parameters. A symmetric moving average filter is used
to smooth these LLDs across time. The arithmetic mean and
coefficient of variation are then taken for these 18 LLDs,
resulting in 36 parameters. Pitch and loudness are given
additional functionals (i.e. percentile and rising and falling
slopes), yielding a total of 56 parameters. The extended set
includes seven further LLDs, fourteen additional descriptors,
the arithmetic mean of spectral flux in unvoiced areas, the
arithmetic mean of spectral flux and MFCC 1-4 in voiced
parts, and the equivalent sound level, resulting in the 88
eGeMAPS features, in total.

Given the eGeMAPS features, we applied the active data
representation method (ADR) [26] to generate a frame level
acoustic representation for each audio recording. The ADR
method has been used previously to generate large scale
time-series data representation. It employs self-organising
mapping (SOM) to cluster the original acoustic features into
dimensions that represent the number of clusters (“neurons”)
in the map produced by SOM. It then computes histogram
representation of these clusters (as shown in equations (9)
and (10)) for each audio file (i.e. Ai) and their first-order
derivative features (mean and standard deviation features
[26], where the rate of change is given by an approximation

of the derivative (equation (9), which are then normalised
(equation (10)) for use in the ADR model (Figure 4).

vADRAi =
∂cADRAi

∂t
(9)

nADRAinorm =
nADRAi

‖nADRAi‖1
(10)
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FIGURE 4. The ADReSS-M baseline system architecture

This method is entirely automatic in that no speech
segmentation or diarisation information is provided to the
algorithm.

For the AD detection task (task 1), we employed a
Naı̈ve Bayes classifier with kernel smoothing estimation. The
ADR for feature extraction was optimised using grid search
(C = 5, 10, 15, 20, 25, where C stands for the number of
SOM clusters, as described above). In previous work, we
used 2(C + 2) features, which corresponded to two ADR
sets (nADR and dADR, the second of which characterised
frame duration), each ADR consisting of C features and
its respective mean and standard deviation, plus age and
sex [26]. However, in the present study, as the duration is the
same for all frames, we used only C + 2 features (nADR,
mean and standard deviation) plus age and sex. Thus the
ratio of features to training audio samples was 19:237. With
this data representation we achieved accuracy of 75.00% and
73.91% on sample and validation data respectively. On the
test set, specificity was 79.2%, precision was 75%, sensitivity
was 68.2%, and F1 was 71.4%.

For the MMSE regression task (task 2), we employed
a support vector machine (SVM) regressor model with
an RBF kernel with box constraint set to one, using a
sequential minimal optimisation solver. The ADR proce-
dure for feature extraction was optimised using grid search
(C = 5, 10, 15, 20, 25). This model achieved an RMSE of
3.887 (r = 0.348) and 4.955 (r = 0.273) on sample and

6 VOLUME ,



<Society logo(s) and publication title will appear here.>

test data respectively using 25+2 ADR, age and sex features
per recording. The ratio of features to training audio samples
was also 29:237.

The source code for the data set generation procedure and
for the baseline system is available at https://gitlab.com/luzs/
madress-2023, with access granted upon request.

VII. Rank of submissions
The submissions were ranked according to the procedure
described in section V. The scores for the top-5 teams
(excluding the baseline system) are shown in Table 3.

The top scoring team, from the Dept of Computer En-
gineering at Konkuk University and VOINOSIS Inc, South
Korea, employed a novel complementary and simultaneous
ensemble algorithm (CONSEN) on acoustic and disfluency
features, exploring correlations between AD and MMSE
predictions to improve performance [46]. Disfluency, pause
and speech rhythm features have long been used to assess
human performance [47], and have been recently applied to
AD detection to good effect [10], [48]. The team that came
in second place employed a mixed-batch transfer learning
approach for both tasks, applied to eGeMAPS acoustic
features [49]. The third highest scoring team explored a
wider number of acoustic feature extraction methods, em-
ploying an XGBoost classifier for the classification task
and SVM and XGBoost regressors for MMSE prediction
[50]. The fourth ranked team employed an automatic speech
recognition system to derive speech intelligibility features
based on confidence scores assigned by the system, which
along with word-level duration and pause features formed the
input for logistic regression and SVM regression models for
tasks 1 and 2, respectively [51]. The team the came in fifth
place fused linguistic and acoustic features extracted through
speech recognition and pre-trained word embedding and
acoustic embedding models and employed neural networks
consisting of two fully connected layers and SVMs for
classification and regression [52].

The overall accuracy ranking for the participants is shown
in Figure 5. It can be observed, in this dot chart, that there
is a considerable gap between the two top-scoring teams
and the remaining teams. This reflects their effective use of
transfer learning techniques, as well as the ability to identify
language-independent features.

A similar pattern can be discerned in the chart depicting
the regression results (Figure 6) where the gap between
the top scoring team and the remaining teams is even
more pronounced. This underscores the effectiveness of the
approach of using learning of MMSE scores to leverage
classification learning, employed by the winning team.

VIII. Descriptions of the top-5 submissions
Jin et al. [46] conducted a series of experiments using
acoustic, disfluency and fusion of acoustic and disfluency
features. They showed that the disfluency feature provides
better results than acoustic features and generalises well

across languages. They proposed an ensemble algorithm
(CONSEN) which achieved the best-performing results us-
ing the fusion of disfluency and acoustic features with an
accuracy of 87.0% in AD detection and 3.727 RMSE in
MMSE prediction. The unique feature of this top-scoring
approach was its leveraging of MMSE prediction as a means
to improve AD detection accuracy. While this approach
would not be feasible were training data for cognitive testing
not available, it suggests an interesting way of combining
speech-based cognitive assessment with better established
tests of cognitive function currently in clinical use.

Tamm et al. [49] created models using a sequence of
acoustic features and covariates (age, sex, and education).
The models were first trained on English data, and then
transferred to Greek using mixed-language batches and pa-
rameter averaging. Results yielded 82% accuracy for AD
detection and an RMSE of 4.345 for MMSE score prediction
on the test set. For the classification task, the best model had
91.7% specificity, 88.9% precision, 72.7% sensitivity and
an F1-score of 80.0%. The distinguishing characteristic of
Tamm et al.’s approach is their use of the same deep learn-
ing architecture for both tasks. Their network architecture
consisted of batch normalisation of input features, attention
weights computed by two feed-forward layers with dropout
and ReLU activation.

Mei et al. [50] provide insights into the methodologies,
techniques, and algorithms employed by the USTC team
to tackle the ADReSS-M Challenge. They discuss their
system’s architecture, data preprocessing, feature extraction
methods, and machine learning or deep learning models used
for emotion recognition in speech. The unique characteristics
of the approach described are the use of a 10-dimensional
feature set for distinguishing among pauses, following the
method proposed in a previous AD detection challenge [48],
the fusion of several low-level paralinguistic descriptors used
for extraction and fine-tuning of a pre-trained wav2vec2
model [53]. The XGBoost classifier [54] achieved 73.9%
accuracy, and the pre-trained bilingual model achieved up to
87.5% in validation against the Greek language samples pro-
vided for training. The results indicate that using balanced,
low-pass filtered, bilingual speech data in fine-tuning pre-
trained models and classifier training could be beneficial to
multilingual AD detection.

Shah et al. [51] investigated language-agnostic speech
representations, which are speech features or characteristics
that can be effectively applied across different languages,
without requiring language-specific adaptations [55]. The
researchers focused on using domain knowledge, likely
related to the specific characteristics of AD, to develop
and evaluate these speech representations for the purpose
of detecting the early cognitive changes across the AD
spectrum. The study explored various machine learning tech-
niques to learn meaningful representations from speech data,
considering language-agnostic aspects to ensure the model’s
generalisation across multiple languages. The findings of
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TABLE 3. Ranking of teams results by overall composite (T) scores (combined classification and regression results).

Rank Team Overall (T) Detection (A) MMSE (RMSE)

1 Dept of Computer Engineering at Konkuk University and VOINOSIS Inc, South Korea 1.011 0.870 3.727
2 Katholieke Universiteit Leuven, Belgium 1.002 0.826 4.345
3 University of Science and Technology of China 0.994 0.739 4.610
– University of Edinburgh Baseline 0.990 0.739 4.955
4 University of Alberta, Canada; ILSP, Athena Research Centre, Greece 0.989 0.696 4.769
5 Tsinghua University , China 0.989 0.696 4.788

UMass Boston, USA
University of Illinois Chicago, USA

Aalto University, Finland
Cornell University, USA

South China University of Technology, China
University of Leeds, UK

vicomtech, Spain
Sungkyunkwan University, South Korea

The Royal Institute of Technology, KTH, Sweden
Amrita Vishwa Vidyapeetham, India 

Indian Institute of Technology Guwahati, India.
New York Institute of Technology (NYIT), USA

Samsung R&D Bangloare, India.
Adam Mickiewicz University, Poland

Friedrich−Alexander−Universitaet, Germany
Danmarks Tekniske Universitet, Denmark

Tsinghua University , China
University of Alberta, Canada

MIT, USA
University of Science and Technology of China

UoE Baseline
Jiangnan University, China

Behavioral Signal Technologies, Inc. USA
Katholieke Universiteit Leuven, Belgium

Konkuk University and VOINOSIS Inc, South Korea

0.6 0.7 0.8
Classification (accuracy)

Te
a
m

FIGURE 5. AD detection accuracy results.

this research could contribute to the development of robust
and language-independent diagnostic tools for AD, making
it easier to identify potential patients regardless of their
native language. The paper presents a concise overview
of the researchers’ methodology, experimental results, and
implications for future research directions in the domain of
speech-based AD detection.

Chen et al. [52] made use of three processing streams in
their approach to the ADReSS-M tasks. For the extraction
of paralinguistic features, they used three different feature
sets extracted through the openSMILE toolkit [56] and pre-
trained models. They applied SVM to each separately to
perform classification and prediction. The best F1 score for
these three analyses was 0.72 for the IS10-Paralinguistics
feature set [57]. For an analysis based on pre-trained acoustic
features, they used the XLSR-53 model [58]. Although that
model has been trained on 53 languages, it does not include
Greek and this could have led to a weaker performance for
this method. Using the Whisper speech recognition model,
they produced English texts from the Greek audio which
they used to train a RoBERTa model. This method produced
a lower F1 score of 0.55 due to inconsistencies between the
pictures described in Greek and those for English. Features
from both the XLSR-53 model and the RoBERTa model used
a two level fully connected network to generate values for
classification and regression.

IX. Discussion
ADReSS-M attracted the participation of a large number
of teams from leading research labs from across the world,
evidencing the relevance of the emerging field of research on
speech-based digital biomarkers for AD in general, and on
methods that generalise across languages in particular. The
diversity of approaches presented by the participating teams,
including proposals for novel acoustic feature sets, the use
of pre-trained models, the combination of automatic speech
recognition and multilingual embedding models, the use of
transfer learning, and a novel ensemble learning method that
combines the diagnosis and the cognitive score prediction
learning tasks will hopefully open new avenues for further
explorations in this area.

Despite the fact that ADReSS-M focused on a multilin-
gual or cross-lingual learning setting, the submissions to
the challenge tended to follow the trends set in previous
shared tasks aimed at assessing cognitive function through
analysis of speech [8], [9], [12] as regards feature engi-
neering and feature extraction. Considering the small size
of the ADReSS-M data set and the fact that the picture
descriptions were different in the training and test sets (not
only in language but also in content, as the pictures were
different), we expected that the proposed models would rely
on more abstract acoustic features rather than on lexical or
structural linguistic features, as the former are presumably
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FIGURE 6. MMSE regression results.

less language-dependent than the latter [26], [59], [60].
Indeed this was the case for most submissions, as four of the
top-scoring teams [46], [49]–[51] employed acoustic features
exclusively (even though in some cases ASR output was
employed to derive dysfluency and pause features). However,
some of the submitted models, including one of the top-
5 [52] employed linguistic features, either by themselves or
in combination with acoustic and paralinguistic features.

Among the proposed acoustic models, the majority em-
ployed pre-trained models such as wav2vec2 [61] and
Whisper [62] as a means of extracting acoustic features.
Such approaches have been employed successfully in AD
detection tasks, from the first ADReSS challenge, where
transformer-based language models were widely used in
combination with paralinguistic information [10], [63], [64]
to recent work presented at ICASSP 2023 [65] which com-
pared several large-scale, pre-trained acoustic and language
models for the original (monolingual) ADReSS classification
task. Acoustic features derived through feature engineering,
notably some commonly used openSMILE-generated feature
sets were also used, and achieved good results [49], in
combination with demographic information. It is noteworthy
that the use of features that characterise speech dysfluency
proved effective in several models, confirming the findings
of models trained and tested on monolingual data (e.g. [10],
[66]) in previous challenges. Therefore it seems fair to con-
clude that these features are both effective and generalisable
across languages.

As regards the classification and regression algorithms
employed by the participating teams, both conventional
machine learning algorithms — such as classifier ensembles
(including Random Forests), gradient boosting (including
XGBoost), SVM, SVR, and logistic regression — and deep
neural networks. In some cases [51], [65], these methods
were used for feature selection in addition to classification
and regression.

While we believe ADReSS-M provides a useful stan-
dard benchmark for assessment of cognition across the two
languages in our data set, we acknowledge that it also
has limitations. As with all shared machine learning tasks,
focusing the attention of a large community on a single task
and data set poses the risks associated with “over testing”
at the community level, namely, that results might be due
to particular choices of parameters rather than to general
characteristics of language and their relation with cognition.
More research is needed on the mechanisms underlying
cognitive decline in Alzheimer’s disease and how these
mechanisms might translate to linguistic and phonological
behaviour. This is a complex undertaking, which we hope
ADReSS-M and similar task might contribute to facilitating.
Within the task itself, comparability of results is somewhat
problematic due to the fact that many different approaches
were employed, some of which leveraged information that
was available for both tasks (classification and regression)
rather than the individual task in question. Prediction of
MMSE scores can obviously help prediction of AD, and
the fact that MMSE scores were available benefited those
teams that chose to exploit them. While the challenge’s
rules did not preclude the use of such strategies, and in
fact their use illustrates interesting possibilities for ensemble
learning which we had not foreseen, MMSE information
may not always be available in practical situations. Finally,
we believe the ICASSP regulations regarding accepting only
papers from the five top-scoring teams risked excluding
interesting approaches which, while not scoring well in
the tasks, might have provided interesting insights into the
problem of cognitive assessment across languages. This is
an issue future challenge organising committees might wish
to consider.
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X. Conclusion
Computational analysis of spontaneous connected speech has
the potential to enable novel applications for speech tech-
nology in longitudinal, unobtrusive monitoring of cognitive
health. By focusing on AD recognition using spontaneous
speech, the ADReSS-M signal processing grand challenge
provided a platform for the investigation of alternative to
neuropsychological and clinical evaluation approaches to
AD detection and cognitive assessment. Furthermore, we
expect that the multilingual resources and models provided
by ADReSS-M will allow the investigation of features that
might generalise across languages, extending the applicabil-
ity of these models in future. In keeping with the objectives
of AD prediction evaluation, the ADReSS-M challenge pro-
vided a statistically balanced data set to mitigate common
biases often overlooked in evaluations of AD detection
methods, including repeated occurrences of speech from the
same participant, variations in audio quality, and imbalances
of sex, age and educational level. We hope this might serve
as a benchmark for future research on multilingual AD
assessment.
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González, J. Mekyska, and Z. Smékal, “Alzheimer’s disease and
automatic speech analysis: a review,” Expert systems with applications,
vol. 150, pp. 113213, 2020.

[4] I. Martı́nez-Nicolás, T. E. Llorente, F. Martı́nez-Sánchez, and J. J. G.
Meilán, “Ten years of research on automatic voice and speech analysis
of people with alzheimer’s disease and mild cognitive impairment:
a systematic review article,” Frontiers in Psychology, vol. 12, pp.
620251, 2021.

[5] A. M. Lanzi, A. K. Saylor, D. Fromm, H. Liu, B. MacWhinney, and
M. L. Cohen, “DementiaBank: Theoretical rationale, protocol, and
illustrative analyses,” ASHA Wire, Feb. 2023.

[6] A. W. Toga, M. Phatak, I. Pappas, S. Thompson, C. P. McHugh, M. H.
Clement, S. Bauermeister, T. Maruyama, and J. Gallacher, “The pursuit
of approaches to federate data to accelerate Alzheimer’s disease and
related dementia research: GAAIN, DPUK, and ADDI,” Frontiers in
Neuroinformatics, vol. 17, pp. 1175689, 2023.

[7] AD Workbench, “Alzheimer’s disease data initiative,” Web site, 2020,
Retrieved from https://www.alzheimersdata.org/.

[8] S. Luz, F. Haider, S. de la Fuente, D. Fromm, and B. MacWhinney,
“Alzheimer’s dementia recognition through spontaneous speech: The
ADReSS Challenge,” in Proceedings of INTERSPEECH 2020, Shang-
hai, China, 2020.

[9] S. Luz, F. Haider, S. de la Fuente, D. Fromm, and B. MacWhinney,
“Detecting Cognitive Decline Using Speech Only: The ADReSSo
Challenge,” in Proc. Interspeech 2021, 2021, pp. 3780–3784.

[10] J. Yuan, X. Cai, Y. Bian, Z. Ye, and K. Church, “Pauses for detection
of Alzheimer’s disease,” Frontiers in Computer Science, vol. 2, pp.
57, 2021.

[11] Z. Shah, J. Sawalha, M. Tasnim, S.-a. Qi, E. Stroulia, and R. Greiner,
“Learning language and acoustic models for identifying Alzheimer’s
dementia from speech,” Frontiers in Computer Science, vol. 3, pp. 4,
2021.

[12] S. Luz, F. Haider, D. Fromm, and B. MacWhinney, Eds., Alzheimer’s
Dementia Recognition Through Spontaneous Speech, Frontiers Media
SA, 2021.

[13] S. Luz, F. Haider, D. Fromm, I. Lazarou, I. Kompatsiaris, and
B. MacWhinney, “Multilingual Alzheimer’s dementia recognition
through spontaneous speech: a signal processing grand challenge,”
in Proccedings of the IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP 2023). June 2023, IEEE Press.

[14] FDA-NIH Biomarker Working Group, BEST (Biomarkers, EndpointS,
and other Tools) Resource, Food and Drug Administration (US),
Bethesda, MD, USA, 2016.

[15] D. R. Galasko, R. L. Gould, I. S. Abramson, and D. P. Salmon,
“Measuring cognitive change in a cohort of patients with alzheimer’s
disease,” Statistics in medicine, vol. 19, no. 11-12, pp. 1421–1432,
2000.

[16] J. M. Taylor, D. P. Ankerst, and R. R. Andridge, “Validation of
Biomarker-Based Risk Prediction Models,” Clinical Cancer Research,
vol. 14, no. 19, pp. 5977–5983, 09 2008.

[17] C. Kovalchick, R. Sirkar, O. B. Regele, L. C. Kourtis, M. Schiller,
H. Wolpert, R. G. Alden, G. B. Jones, and J. M. Wright, “Can
composite digital monitoring biomarkers come of age? a framework
for utilization,” Journal of Clinical and Translational Science, vol. 1,
no. 6, pp. 373–380, 2017.

[18] F. Eyben, K. R. Scherer, B. W. Schuller, J. Sundberg, E. André, C.
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