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Abstract

Aphasia is a language disorder that affects the speaking

ability of millions of patients. This paper presents a new bench-

mark for Aphasia speech recognition and detection tasks using

state-of-the-art speech recognition techniques with the Aphsia-

Bank dataset. Specifically, we introduce two multi-task learn-

ing methods based on the CTC/Attention architecture to per-

form both tasks simultaneously. Our system achieves state-of-

the-art speaker-level detection accuracy (97.3%), and a relative

WER reduction of 11% for moderate Aphasia patients. In ad-

dition, we demonstrate the generalizability of our approach by

applying it to another disordered speech database, the Demen-

tiaBank Pitt corpus. We will make our all-in-one recipes and

pre-trained model publicly available to facilitate reproducibility.

Our standardized data preprocessing pipeline and open-source

recipes enable researchers to compare results directly, promot-

ing progress in disordered speech processing.

Index Terms: Disordered Speech Recognition, Assessment of

Pathological Speech, Aphasia

1. Introduction

Aphasia is a language disorder that affects patients’ abilities to

communicate effectively. This condition can manifest in vari-

ous components of the language, including phonology, gram-

mar, and semantics, among others [1, 2]. Recent studies have

developed machine learning methods for Aphasia speech recog-

nition and detection to assist clinicians in the diagnosis and doc-

umentation process. The recognition task involves transcribing

Aphasia speech into text, while the detection task requires clas-

sifying whether a speaker has Aphasia.

For the recognition task, various automatic speech recog-

nition (ASR) architectures have been benchmarked on Apha-

sia speech data. A recent trend is using a pre-trained

Wav2vec2.0 [3] to perform zero-shot or few-shot predictions for

low-resource languages [4, 5]. Other benchmarked ASR models

include DNN-HMM [6, 7] and RNN [8–10]. While some stud-

ies formulate the detection task as a binary classification prob-

lem [4, 11], others consider it as an Aphasia Quotient prediction

task [8, 9, 12, 13]. Aphasia Quotient (AQ) is a metric used to

measure the severity of Aphasia [14]. Linguistic statistics ex-

tracted from transcripts or ASR output are commonly used as

input features. They include filler words per minute, pauses to

words ratio, number of phones per word, and many more [4, 8,

9, 11–13]. Some researchers incorporate acoustic information

as well since it also contains signs of Aphasia [9, 10, 12]. The

classification or regression models used in these studies vary

from classical machine learning models such as SVM [4, 8, 11,

12] to deep neural networks [10, 13, 15, 16].

Although several ASR systems have been tested in these

studies, we believe performance can be further improved by

leveraging recent state-of-the-art ASR architectures. Further-

more, as most existing Aphasia detectors require text as the in-

put, an ASR system is required if the transcription is not avail-

able. Since ASR errors can cascade into the detection system,

the detection accuracy might be suboptimal. Therefore, we aim

to build an end-to-end system that can perform both tasks si-

multaneously using the latest ASR technologies. This system

should be able to derive linguistic features from acoustic input

implicitly and utilize both of them for the tasks.

To the best of our knowledge, we are the first to present an

architecture that can detect the presence of Aphasia on both the

sentence and the speaker level, while simultaneously transcrib-

ing the speech to text. Our system has two variants and achieves

state-of-the-art detection performance on the AphasiaBank En-

glish subset. This is achieved with the help of the hybrid

CTC/Attention ASR architecture [17], E-Branchformer [18],

and WavLM [19]. Among existing studies, we found incon-

sistencies in evaluation metrics, data compositions, and pre-

processing procedures. Therefore, we make our code and pre-

trained model open-source in the hope of establishing a stan-

dardized benchmark environment for both tasks1. We demon-

strate the effectiveness and generalizability of our approach by

applying it to another disordered speech database, the Demen-

tiaBank Pitt corpus [20].

2. Method

In this section, we present a system that jointly models Apha-

sia detection and Aphasia speech recognition. The techniques

used in this system have all been proven to be state-of-the-art in

various speech processing tasks [17, 18, 21, 22].

2.1. Hybrid CTC/Attention

Our proposed method is based on the hybrid CTC/Attention

ASR architecture [17]. This architecture comprises an encoder,

denoted by Enc(·), and a decoder, denoted by Dec(·). The en-

coder captures the acoustic information and can optionally gen-

erate a text sequence using Connectionist Temporal Classifica-

tion (CTC) [23]. The text sequence is primarily predicted by an

attention-based decoder in an auto-regressive manner given the

encoder’s hidden states [17].

The input to the encoder, denoted as X = (xl ∈ R
D|l =

1, . . . , L), is a sequence of L acoustic feature vectors, where

each vector has D dimensions. The ground truth text sequence

is denoted as T = (tk ∈ V |k = 1, . . . , K), which contains

K text tokens from a vocabulary V . Using the CTC algo-

rithm [23], the encoder predicts the likelihood of generating the

1https://github.com/espnet/espnet

http://arxiv.org/abs/2305.13331v1


text sequence given the input PEnc(T |X). The encoder hidden

state output is denoted as H :

H = Enc(X) (1)

P (T |X) = CTC(H) (2)

The decoder models P (T |X) given the encoder hidden states

and prior token predictions [24]:

P (tk|X,T1:k−1) = Dec(H, T1:k−1) (3)

PDec(T |X) ≈

K∏

k

P (tk|X,T1:k−1) (4)

During training, the model is optimized using the weighted sum

of the CTC loss and the decoder loss [17]:

L = λLCTC + (1− λ)LDec (5)

= −λ logPEnc(T |X)− (1− λ) logPDec(T |X) (6)

where the CTC weight λ is an hyper-parameter. The output of

the encoder and decoder is jointly decoded using beam search to

produce the final hypothesis during inference [17]. The system

is often evaluated with word error rate (WER).

2.2. Intermediate CTC

Intermediate CTC (InterCTC) was proposed to regularize deep

encoder networks and to support multi-task learning [22, 25,

26]. To achieve this, the existing CTC module is applied to the

output of an intermediate encoder layer with index e. Then sub-

sequent encoder layers incorporate the intermediate predictions

into their input. Equation 1 can be reorganized as:

He = Enc1:e(X) (7)

P (ZInter|X) = CTC(He) (8)

H = Ence+1:E(NRM(He) + LIN(ZInter)) (9)

where E is the total number of encoder layers, and ZInter is

the latent sequence of the InterCTC target sequence TInter =
(t′k|k = 1, . . . ,K′). NRM(·) and LIN(·) refer to a normal-

ization layer and a linear layer respectively. The negative log

likelihood of generating TInter is used as the InterCTC loss:

LInter = − logPInter(TInter|X) (10)

The choice of TInter is dependent on the task. During training,

the intermediate layer is optimized to correctly predict TInter by

including LInter in the loss function:

L′

CTC = αLInter + (1− α)LCTC (11)

where the InterCTC weight α is a hyper-parameter. The up-

dated overall loss function is obtained by inserting Equation 11

into Equation 5:

L′ = λL′

CTC + (1− λ)LDec (12)

Note that it is possible to apply CTC to multiple encoder layers

while having different target sequences for each. In that case,

the average of all InterCTC losses is used as LInter [22, 26].

2.3. Speech Recognizer

Our speech recognizer follows the design of a hybrid

CTC/Attention architecture described in Section 2.1. It tran-

scribes the acoustic feature sequence Xij belonging to speaker

sj to the corresponding text token sequence Tij .

We experiment with recently proposed encoder architec-

tures that enhance acoustic modeling ability over the original

Transformer. One of these architectures, called Conformer, se-

quentially combines convolution and self-attention. This al-

lows for capturing both the global and the local context of in-

put sequences [27]. On the other hand, Branchformer mod-

els these contexts using parallel branches and merges them

together. Both architectures demonstrate competitive perfor-

mance in speech processing tasks [28]. In subsequent studies,

E-Branchformer is proposed to enhance Branchformer further.

It comprises a better method for merging the branches, and it

achieves the new state-of-the-art ASR performance [18].

Meanwhile, self-supervised learning representation (SSLR)

has been developed to improve the generalizability of acoustic

feature extraction. SSLR leverages a large amount of unlabeled

speech data to learn a universal representation from speech sig-

nals. Studies show significant performance improvement in

ASR and other downstream tasks by using SSLR as the input

of the encoder [19, 21, 29, 30].

2.4. Aphasia Detectors

We present two types of Aphasia detectors based on the speech

recognizer, the tag-based detector and the InterCTC-based de-

tector. Inspired by the use of language identifiers in multilingual

speech recognition [31–33], we form an extended vocabulary

V ′ by adding two Aphasia tag tokens to V :

V
′ = V ∪ {[APH], [NONAPH]} (13)

We then train the ASR model using T
tag

ij = (tk ∈ V ′|k =

1, . . . ,K) as the ground truth, where T
tag

ij is formed by insert-

ing one or more Aphasia tags to Tij . Specifically, [APH] is in-

serted if the speaker has Aphasia while [NONAPH] is inserted if

the speaker is healthy. This method effectively trains the model

to perform both tasks jointly. Moreover, the model leverages

both linguistic and acoustic information to detect Aphasia, as

the encoder first generates an initial tag prediction based on the

acoustic features, and the decoder then refines the prediction

based on prior textual context. During inference, the sentence-

level prediction is obtained by taking out the tag token from the

predicted sequence. Three tag insertion strategies will be tested

in Section 3: prepending, appending, and using both. We note

that all tag tokens are excluded from WER computation.

InterCTC is proven to be effective at identifying language

identity in multilingual ASR as part of a multi-task objective.

By conditioning on its language identity predictions, the ASR

model achieves state-of-the-art performance on FLEURS [22].

Inspired by this, the second type of Aphasia detector uses In-

terCTC to classify input speech as either Aphasia or healthy

speech. During training, the ground truth sequence T inter
ij for In-

terCTC contains an Aphasia tag token. During inference, the

prediction ŷij is generated by checking the tag produced by In-

terCTC greedy search. This approach allows us to select which

encoder layer to use for the best speaker-level accuracy.

For both the tag-based and InterCTC-based detectors, the

speaker-level Aphasia prediction yj is obtained via majority

voting of yij for all i.



3. Experiments

In this section, we first explore the impact of state-of-the-art

encoder architectures and SSLR on Aphasia speech recognition.

We then analyze the performance of the proposed method for

recognition and detection tasks. All of our experiments were

conducted using ESPnet2 [34].

3.1. Datasets

3.1.1. CHAT Transcripts

CHAT [35] is a standardized transcription format for describ-

ing conversational interactions, used by both AphasiaBank and

DementiaBank. Besides the textual representations of spoken

words, it includes a set of notations that describes non-speech

sounds, paraphasias, phonology, morphology, and more. The

transcript cleaning procedures differ between prior works, mak-

ing it difficult to fairly compare their machine learning systems.

Therefore, we derive a pipeline based on previous work [5] in

the hope of standardizing this process for future research.

The specific steps of our pipeline are as follows. (1) Keep

the textual representations of retracing, repetitions, filler words,

phonological fragments, and IPA annotations while removing

their markers. (2) Replace laughter markers with a special to-

ken <LAU>. (3) Remove pre-codes, postcodes, punctuations,

comments, explanations, special utterance terminators, and spe-

cial form markers (4) Remove markers of word errors, inter-

ruption, paralinguistics, pauses, overlap precedes, local events,

gestures, and unrecognized words. (5) Remove all empty sen-

tences after the above steps.

3.1.2. AphasiaBank and DementiaBank

AphasiaBank [36] is a popular speech corpus among the exist-

ing work. The dataset contains spontaneous conversations be-

tween investigators and Aphasia patients. It also includes con-

versations with healthy individuals as the control group. All

experiments in this paper are performed using the English sub-

set. Similar to [5], we obtain the training, validation, and test

set by drawing 56%, 19%, and 25% percent of Aphasic speakers

from each severity. There are four severity levels, each corre-

sponding to a range of AQ scores: mild (AQ > 75), moderate

(50 < AQ ≤ 75), severe (25 < AQ ≤ 50), and very severe (0

≤ AQ ≤ 25) [36]. The control group is split using the same

ratio and merged with patients’ data. Doing so ensures our data

splits are representative across all severity levels. We then slice

the recordings into sentences using the timestamps provided in

the CHAT transcripts while cleaning them as described in Sec-

tion 3.1.1. After that, sentences shorter than 0.3 seconds or

longer than 30 seconds are removed. Before data augmenta-

tion, the training set contains 42.7 hours of patient data and

22.7 hours of control group data while the test data contains

20.1 and 10.1 hours. Details can be found in our code release.

Dementia speech recognition and detection have been a

popular research topic as well [37–42]. We use the Dementia-

Bank Pitt corpus [20] to test the generalizability of our design.

Similar to recent studies [37, 38], we use the ADReSS chal-

lenge [43] test set, which is a subset of the DementiaBank Pitt

corpus, for evaluation and the remaining data in the corpus for

training and validation. We note that audio from the challenge

test set has been enhanced with noise removal and volume nor-

malization, while the transcripts have been preprocessed. To

preserve a consistent data pipeline, we instead use the original

recordings and transcripts from the Pitt corpus as our test data.

Details can be found in our code base.

Model
Patient Control Overall

WER WER WER

Baselines

Conformer 40.3 35.3 38.1
E-Branchformer 36.2 31.2 34.0

Proposed Methods

E-Branchformer+WavLM 26.4 17.0 22.2
+Tag-prepend 26.3 16.9 22.2
+Tag-append 26.2 16.9 22.1

+Tag-prepend/append 26.3 16.8 22.1

+InterCTC-6 26.3 16.9 22.1

+InterCTC-9 26.3 16.9 22.2
+InterCTC-6/Tag-prepend 26.3 16.9 22.1

Table 1: Word error rate (WER) of proposed methods evaluated

on AphasiaBank.

3.2. Experimental Setups

Baseline: We first build two ASR systems using Con-

former [27] and E-Branchformer [18], as described in Sec-

tion 2.3. The Conformer encoder has 12 blocks, each having

2048 hidden units and 4 attention heads. The E-Branchformer

encoder has 12 blocks, each with 1024 hidden units, and 4 at-

tention heads. The cgMLP module has 3072 units and the con-

volution kernel size is 31. Both systems use a Transformer de-

coderwith 6 blocks, each having 2048 hidden units and 4 atten-

tion heads. The Conformer and E-Branchformer models have

44.2 and 45.7 million trainable parameters respectively. For the

detection task, we reproduce the Aphasia detection experiment

from a previous study. The detector is a support vector machine

(SVM) that takes in linguistic features extracted from the oracle

transcript to predict a binary classification label [4].

Proposed Method: We first build a system with learned acous-

tic representations extracted from WavLM [19] as the input to

the E-Branchformer encoder. Using it as a foundation, we build

tag-based and InterCTC-based detectors as described in Sec-

tion 2.4. We also investigate the impact of tag insertion posi-

tions: prepending, appending, and both. Meanwhile, we apply

InterCTC to the 6th and the 9th encoder layer respectively, and

analyze their performance difference. We set both the CTC and

InterCTC weight to 0.3 and the inference beam size to 10.

In all experiments, we use speed perturbation with ratios of

0.9 and 1.1, as well as SpecAugment [44], to augment the data.

We choose the Adam optimizer with a learning rate of 10−3 and

a weight decay of 10−6. We employ warmuplr learning rate

scheduler with 2500 warm-up steps and a gradient clipping of

1. Each final model is selected by averaging the 10 checkpoints

with the highest validation accuracy out of 40 epochs. More

details can be found in our code base.

3.3. Results and Discussion

Overall, the proposed systems achieve both accurate Aphasia

speech recognition and detection at the same time. As shown in

Table 1, switching from Conformer to E-Branchformer leads to

a significant ASR performance improvement by 4.1 WER ab-

solute. Adding WavLM reduces the WER further by 11.8. This

proves the effectiveness of using a state-of-the-art ASR encoder

and SSLR for Aphasia speech recognition. Surprisingly, both

types of detectors lead to a slightly better ASR performance

than the vanilla ASR model (0.1 WER reduction). This implies

that the ASR predictions can be refined based on Aphasia detec-

tion results. We compare the ASR performance of our systems

with previous work in detail in Table 2. Our systems obtained

significant lower WER for mild, moderate, and severe patients,



Model Metric Patient Control Overall

Overall Mild Moderate Severe Very severe

DNN-HMM [6] PER - 47.4 52.8 61.0 75.8 - -

DNN-HMM + MOE [45] PER 36.8 33.1 41.6 62.9 - -

Wav2vec2 (zero-shot) [4] WER 56.0 - - - - 37.5 47.1
BLSTM-RNN+i-Vector+LM [8] WER - 33.7 41.1 49.2 63.2 - -

Wav2vec2 [5] WER - 23.6 36.8 36.4 59.1 - -

E-Branchformer+WavLM

+Tag-prepend WER 26.3 22.3 32.8 34.5 72.5 16.9 22.2
+InterCTC-6 WER 26.3 22.3 32.6 34.7 71.7 16.9 22.1

+InterCTC-6/Tag-prepend WER 26.3 22.1 32.9 34.8 73.3 16.9 22.1

Table 2: The recognition word error rate of proposed methods and existing work on the AphasiaBank English subset. The metrics are

phoneme error rate (PER) and word error rate (WER). Note that existing studies use different data splits than ours.

Model
Accuracy

Sent Spk

SVM [4] - 96.2

E-Branchformer+WavLM

+Tag-prepend 89.3 95.1
+Tag-append 89.2 95.1
+Tag-prepend/append 90.8 95.7
+InterCTC-6 85.2 97.3

+InterCTC-9 84.5 97.3

+InterCTC-6/Tag-prepend 89.7 96.7

Table 3: Sentence-level (Sent) and speaker-level (Spk) detec-

tion accuracy of proposed methods on AphasiaBank. [4] is

reproduced using the official code with oracle transcripts as

the input. For +Tag-prepend/append and +InterCTC-6/Tag-

prepend experiments, only the Tag-prepend output is reported

since the difference is negligible.

even against systems using an external language model. Despite

this, they have a much higher WER for very severe Aphasia pa-

tients. We believe this is because hybrid CTC/Attention archi-

tectures are data-hungry, but the number of utterances and their

average duration is much smaller for very severe patients.

From Table 3, we can see that the tag-based Aphasia de-

tectors have the best sentence-level Aphasia detection accu-

racy. Interestingly, although the performance difference be-

tween prepending and appending Aphasia tags is insignificant,

inserting at both positions leads to slightly better sentence-level

and speaker-level accuracy. Meanwhile, the InterCTC-based

detector at layer 6 achieves state-of-the-art speaker-level ac-

curacy (97.3%), surpassing the SVM baseline. However, its

sentence-level accuracy is lower than those of tag-based detec-

tors. This corresponds to previous studies showing that mid-

dle encoder layers are more important to speaker-related tasks

while the bottom layers are more relevant to ASR and related

tasks [19, 30]. We also find that tag-based detectors produce

significantly more false positives for speakers who do not have

Aphasia but are less fluent than others, thus having a lower

speaker-level accuracy. This implies that tag-based detectors

are sometimes too sensitive to dysfluency.

Finally, more accurate tag-based predictions can be ob-

tained by combining InterCTC and tag-prepending. This sug-

gests that tag predictions are refined based on prior InterCTC

predictions. A similar result is discovered in a previous study

where the language identity predictions are more accurate by

incorporating an InterCTC auxiliary task [22]. In addition, the

combined model has higher sentence-level accuracy and lower

speaker-level accuracy compared to its InterCTC counterpart,

which demands future investigation.

Model Patient Control Overall
Accuracy

Sent Spk

Conformer [38] - - 29.7 - -

Conformer [37] - - 25.5 - 91.7

E-Branchformer+WavLM

+Tag-prepend 39.1 15.0 24.8 65.6 83.3
+InterCTC-6 39.6 15.0 25.1 61.3 77.1

Table 4: Test result of proposed methods on DementiaBank.

The metric for speech recognition is the word error rate (WER).

The metrics for Dementia detection are sentence-level (Sent)

and speaker-level (Spk) accuracy. Other studies [39–42] are

not listed as their models are trained and tested on different

data. Note that [37, 38] use a larger and cleaner training set.

Table 4 shows evaluation results for DementiaBank. Al-

though the overall WER is much lower than those in previ-

ous studies, Dementia detection accuracy is suboptimal. As

we drew original recordings from the DementiaBank Pitt cor-

pus, the audio is often noisy and has variable speaking volume.

Consequently, the model is less effective at acoustic modeling,

as seen by the decreased InterCTC detection accuracy. The re-

sults also suggest that linguistic features are more important for

Dementia detection than Aphasia. Furthermore, majority vot-

ing for speaker-level predictions is less effective in this case as

the number of sentences per speaker is typically between 5 to

20. Despite this, we believe our method has the potential to be

adapted to other disordered speech in future studies.

4. Conclusion

In this paper, we build an all-in-one Aphasia speech recognition

and detection system and test its performance using Aphasia-

Bank and DementiaBank. We also standardize the data process-

ing and model evaluation process to establish a public bench-

mark. Future studies are required to improve the recognition

performance for severe Aphasia patients and the detection per-

formance on DementiaBank. We can also further investigate

the impact of joint learning and combining detector methods,

and explore the potential benefits of fine-tuning a pre-trained

healthy ASR system using disordered speech.
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